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Abstract: A non-linear predictive generalised minimum variance control algorithm is introduced for the control of non-
linear discrete-time state-dependent multivariable systems. The process model includes two different types of subsystems
to provide a variety of means of modelling the system and inferential control of certain outputs is available. A state-
dependent output model is driven from an unstructured non-linear input subsystem which can include explicit transport-
delays. A multi-step predictive control cost function is to be minimised involving weighted error, and either absolute or
incremental control signal costing terms. Different patterns of a reduced number of future controls can be used to limit
the computational demands.

1 Introduction

The objective is to design an industrial controller for non-linear
and state-dependent, or linear parameter varying systems, which
has some of the advantages of the popular generalised predictive
control (GPC) algorithms. The control strategy builds upon previ-
ous results on non-linear generalised minimum variance (NGMV)
control [1]. The assumption was made that the plant model could
be decomposed into a set of delay terms, a very general non-linear
subsystem that had to be stable and a linear subsystem. The plant
description used here will be assumed to be similar, however, the
output subsystem is assumed to be represented in state-dependent,
possibly unstable, form.

The multi-step predictive control cost function to be minimised
involves both weighted error and control costing terms, which can
be used with different error and control horizons. Two alternative
types of control signal input to the plant model are considered.
The first is the traditional control signal input and it is this signal
which is also penalised in the predictive control criterion. How-
ever, as is well known it is sometimes desirable to augment the
plant model with an integrator to provide a simple way of intro-
ducing integral action. In the augmented system, the new system
input is the change of control action or increment, and in this
case this is the signal which should be penalised in the crite-
rion. The results will apply to both cases and a parameter change
between β = 0 and β = 1 will provide the necessary switch.
The cost includes dynamic weightings on both error and control
signals.

There is a rich history of research on non-linear predictive con-
trol [2–7], but the development proposed is somewhat different,
since it is closer in spirit to that of a model based fixed-structure
controller for a time-varying system. Part of the plant model can
be represented by a very general non-linear operator and the plant
can also include a state-dependent (or linear parameter varying)
output subsystem model, rather than a LTI model, as in previous
work.

For equivalent linear systems, stability is ensured when the com-
bination of a control weighting function and an error weighted plant
model is strictly minimum phase. For nonlinear systems it is shown
that a related operator equation is required to have a stable inverse.
The dynamic cost-function weightings are chosen to satisfy perfor-
mance and stability/robustness requirements and a simple method
is proposed for obtaining initial values for the weightings.

2 Non-linear operator and state-dependent
system

The plant model can be non-linear, dynamic and may have a very
general structure. The output subsystem and disturbance model are
represented by a so-called state-dependent subsystem is shown in
Fig. 1. The plant involves two non-linear subsystems and the first
subsystem is of a very general non-linear operator form and written
as follows

(W1u)(t) = z−k (W1k u)(t)

The second subsystem is a state-dependent non-linear form, which
is similar to a time-varying linear system. It is assumed to be point-
wise stabilisable and detectable, and is represented by the operator
W0 written as follows

(W0 u0)(t) = (W0k z−k u0)(t)

2.1 Signal definitions

The output of the system to be controlled y(t) may be dif-
ferent to that measured, as shown in Fig. 1, and this output
includes deterministic d(t) and stochastic yd(t)components of the
disturbances. The measured output ym(t) also includes determinis-
tic dm(t) and stochastic ydm(t) components of the disturbances.
The stochastic component is modelled by a disturbance model,
driven by zero mean white noise{ζ0(t)}. The measurement noise
{vm(t)} is assumed to be zero-mean white noise with covariance
matrix Rf = RT

f ≥ 0. There is no loss of generality in assum-
ing that {ζ0(t)} has an identity covariance matrix. The controlled
output must follow a reference r(t), which is assumed to be
known.

2.2 State-dependent subsystem models

The second or output subsystem is in a state-dependent/LPV form,
which includes the plant and the error weighting models (see [8]).
This is assumed to include a common k-steps transport delay, and
has the state-equation

x0(t + 1) = A0(x, u0, p)x0(t) + B0(x, u0, p)u0(t − k)

+ D0(x, u0, p)ζ0(t) + G0(x, u0, p)d0d(t) (1)
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Fig. 1 Feedback control with inferred or controlled outputs

where the vector p is a vector of known variables like speed of
an engine, or altitude of an aircraft that change with operating
conditions. The controlled output and measured output (without
measurement noise)

y(t) = d0(t) + C0(x, u0, p)x0(t) + E0(x, u0, p)u0(t − k) (2)

ym(t) = d0m(t) + C0m(x0, u0, p)x0(t) + E0m(x0, u0, p)u0(t − k)
(3)

where x0(t) ∈ Rn0 . This model can be a function of the states,
inputs and parameters (x(t), u0(t − k), p(t)). The deterministic
component of the input disturbance is d0d(t) and the disturbance on
the output to be controlled d0(t) = d(t) + yd(t) includes a known
deterministic component d(t) and a stochastic component yd(t).
The disturbance on the measured output d0m(t) = dm(t) + ydm(t),
where dm(t) is the deterministic and ydm(t) is the stochastic. The
plant includes a disturbance model on the output, driven by zero
mean white noise ω(t)

xd(t + 1) = Adxd(t) + Ddω(t), xd(t) ∈ Rnd (4)

yd(t) = Cdxd(t) and ydm(t) = Cdmxd(t) (5)

The signals of interest include the error on the output to be
controlled and the measured output

Error signal : e(t) = r(t) − y(t) (6)

Observations signal : zm(t) = ym(t) + vm(t) (7)

The signal to be controlled will involve the weighted tracking error
in the system

xp(t + 1) = Apxp(t) + Bp(r(t) − y(t)), xp(t) ∈ Rnp (8)

ep(t) = Cpxp(t) + Ep(r(t) − y(t)) (9)

The traditional method of introducing integral action in predictive
controls is to augment the system input by adding an integrator
using the input subsystem

xi(t + 1) = βxi(t) + �u0(t − k), xi(t) ∈ Rni (10)

u0(t − k) = βxi(t) + �u0(t − k) = (1 − βz−1)−1 �u0(t − k)
(11)

The � = (1 − βz−1), for β = 1 and the transfer (11) is an inte-
grator without additional delay, and if β = 0, then u0(t − k) =
�u0(t − k). The results can therefore apply to systems using
control input or rate of change of control.

2.3 Total augmented system

The state-space model, for the r × m multivariable system to be
controlled is now defined in augmented system form. Combin-
ing the plant, disturbance, integral and weighting equations, the

augmented state-vector becomes

x(t) = [
xT

0 (t) xT
d (t) xT

i (t) xT
p (t)

]T

To simplify notation write At = A(x(t), u0(t − k), p(t)) and sim-
ilarly for the time-varying matrices Bt , Ct , Dt and Et , with state
x(t) ∈ Rn. The augmented system equations may be written as
follows

x(t + 1) = Atx(t) + Bt�u0(t − k) + Dtζ(t) + dd(t) (12)

y(t) = d(t) + Ctx(t) + Et�u0(t − k) (13)

ym(t) = dm(t) + C m
t x(t) + E m

t �u0(t − k) (14)

zm(t) = vm(t) + dm(t) + C m
t x(t) + E m

t �u0(t − k) (15)

ep(t) = dp(t) + Cptx(t) + Ept�u0(t − k) (16)

The augmented system has an input �u0(t) and the change
in actual control is denoted �u(t)(these are related as �u0(t) =
W1k (., .)�u(t)).

2.4 Definition of the augmented system matrices

The equations in Section 2.2 can be combined with a little manip-
ulation to obtain the augmented system matrices. That is the total
state-equation model may be written in terms of the augmented
system matrices, as follows

x(t + 1) = Atx(t) + Bt�u0(t − k) + Dtξ(t) + dd(t) (17)

where the matrices in this equation are defined from the combined
model equations

⎡
⎢⎢⎣

x0(t + 1)

xd(t + 1)

xi(t + 1)

xp(t + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A0 0 βB0 0
0 Ad 0 0
0 0 βI 0

−BpC0 −BpCd −βBpE0 Ap

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0(t)
xd(t)
xi(t)
xp(t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

B0

0
I

−BpE0

⎤
⎥⎥⎦ �u0(t − k) +

⎡
⎢⎢⎣

D0 0
0 Dd

0 0
0 0

⎤
⎥⎥⎦

[
ζ0(t)
ω(t)

]

+

⎡
⎢⎢⎣

G0 0
0 0
0 0
0 Bp

⎤
⎥⎥⎦

[
d0d(t)

(r(t) − d(t))

]
(18)

The output to be controlled may be written in terms of augmented
system model in (13). That is

y(t) = d(t) + C0x0(t) + Cdxd(t) + E0βxi(t) + E0�u0(t − k)

= d(t) + Ctx(t) + Et�u0(t − k) (19)

where Ct = [
C0 Cd E0β 0

]
and Et = E0
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Similarly from (3) and (5), the measured output may be written
in the augmented system as follows

ym(t) = dm(t) + Cm
t x(t) + Em

t �u0(t − k) (20)

where Cm
t = [

C0m Cdm E0mβ 0
]

and Em
t = E0m.

Also from (2) and (9), the weighted tracking error to be
minimised may be written as

ep(t) = dp(t) + Cp tx(t) + Ep t�u0(t − k) (21)

where

dp(t) = Ep(r(t) − d(t))

Cp t = [−EpC0 −EpCd −βEpE0 Cp
]

and

Ep t = −EpE0

The subscript t on the state matrices here is used for the augmented
system and in a slight abuse of notation it also indicates that these
matrices are evaluated at time t, so that the system matrix at t + 1
is written as At+1.

3 State-dependent future state and error models

A state-dependent model prediction equation is required and later
an estimator for the state-dependent models. The future values of
the states and outputs may be obtained by repeated use of (12)
assuming that the future values of the disturbance are known.
Introduce the notation

Ai−m
t+m = At+i−1At+i−2 . . . At+m for i > m, where

A0
t+m = I for i = m

Ai
t = At+i−1At+i−2 . . . At for i > 0, where

A0
t = I for i = 0

(22)

Future states: Generalising this result obtain, for i ≥ 1, the state,
at any future time ti, may be written as

x(t + i) = Ai
t x(t) +

i∑
j=1

Ai−j
t+j(Bt+j−1�u0(t + j − 1 − k)

+ Dt+j−1ξ(t + j − 1)) + ddd(t + i − 1) (23)

where

ddd(t + i − 1) =
i∑

j=1

Ai−j
t+jdd(t + j − 1) (24)

These (23) and (24) are valid for i ≥ 0 if the summation terms are
defined as null for i = 0. Noting (16) the weighted error or output
signal ep(t) to be regulated at future times (for i ≥ 0)

ep(t + i) = dp(t + i) + Cp t+ix(t + i) + Ep t+i�u0(t + i − k)

= dpd(t + i) + Cp t+iAi
t x(t)

+ Cp t+i

i∑
j=1

Ai−j
t+jBt+j−1�u0(t + j − 1 − k)

+ Cp t+i

i∑
j=1

Ai−j
t+jDt+j−1ξ(t + j − 1)

+ Ep t+i�u0(t + i − k)

(25)

where dp(t) = Ep(r(t) − d(t)) and the deterministic signals

dpd(t + i) = dp(t + i) + Cp t+iddd(t + i − 1) (26)

3.1 State estimates using state-dependent prediction
models

The i-steps prediction of the state for i ≥ 0 and the output signals
may be defined, noting (23), as

x̂(t + i|t) = Ai
t x̂(t|t) +

i∑
j=1

Ai−j
t+jBt+j−1�u0(t + j − 1 − k)

+ ddd(t + i − 1) (27)

where Ai−j
t+j = At+i−1At+i−2 . . . At+j and ddd(t + i − 1) = ∑i

j=1

Ai−j
t+jdd(t + j − 1), and for i = 0 the ddd(t − 1) = 0. The predicted

output

ŷ(t + i|t) = d(t + i) + Ct+i x̂(t + i|t) + Et+i�u0(t − k + i) (28)

The weighted prediction error for i ≥ 0

êp(t + i|t) = dp(t + i) + Cp t+i x̂(t + i|t) + Ep t+i�u0(t − k + i)
(29)

The expression for the future predicted states and error signals may
be obtained by changing the prediction time in (27) t → t + k .
Then, for i ≥ 0

x̂(t + k + i|t) = Ai
t+k x̂(t + k|t) +

i∑
j=1

Ai−j
t+k+j

× Bt+k+j−1�u0(t + j − 1) + ddd(t + k + i − 1)

(30)

Predicted weighted output error: Substituting in (29) and simpli-
fying, for i → i + k , and i ≥ 0, obtain

êp(t + i + k|t) = dpd(t + i + k) + Ep t+i+k�u0(t + i)

+ Cp t+i+kAi
t+k x̂(t + k|t)

+ Cp t+i+k

i∑
j=1

Ai−j
t+k+jBt+k+j−1�u0(t + j − 1)

(31)

and

êp(t + i|t) = dpd(t + i) + Ep t+i�u0(t + i − k) + Cp t+iAi
t+k x̂(t|t)

+ Cp t+i

i∑
j=1

Ai−j
t+jBt+j−1�u0(t + j − 1 − k)

(32)

The deterministic signals in this equation

dpd(t + i + k) = dp(t + i + k)

+
i∑

j=1

Cp t+i+kAi−j
t+k+jdd(t + k + j − 1) (33)

and for i = 0 the term dpd(t + k) = dp(t + k).

3.2 Vector–matrix form of equations

The predicted errors or outputs may be computed for controls in a
future interval τε[t, t + N ] for N ≥ 1. These weighted error signals
may be collected in the following N + 1 vector form: (see (34) at
the bottom of the next page)

Future error and predicted error: With an obvious definition of
terms this equation may be written as

ÊP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t)
+ (CP t+k ,N Bt+k ,N + EP t+k ,N )�U 0

t,N (35)
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Define the time-varying matrix

VP t+k ,N = CP t+k ,N Bt+k ,N + EP t+k ,N (36)

so that

ÊP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t) + VP t+k ,N �U 0
t,N

(37)

Similarly the weighted future errors may be written, including
	t+k ,N , as

EP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x(t + k) + VP t+k ,N �U 0
t,N

+ CP t+k ,N Dt+k ,N 	t+k ,N (38)

Block matrices: Noting (34) the vectors and block matrices, for
the general case of N ≥ 1, may be defined as

CPt+k ,N = diag{Cpt+k , Cpt+1+k , Cpt+2+k , . . . , Cpt+N+k }
EPt+k ,N = diag{Ept+k , Ept+1+k , . . . , Ept+N+k } (39)

At+k ,N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I

A1
t+k

A2
t+k
...

AN
t+k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Bt+k ,N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

Bt+k 0 · · · ... 0

A1
t+k+1Bt+k Bt+k+1

. . .
...

...
...

. . . 0 0
AN−1

t+k+1Bt+k AN−2
t+k+2Bt+k+1 · · · Bt+k+N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Dt+k ,N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

Dt+k 0 · · · ...

At+k+1Dt+k Dt+k+1
. . .

...
...

. . . 0
AN−1

t+k+1Dt+k AN−2
t+k+2Dt+k+1 · · · Dt+k+N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

	t,N =

⎡
⎢⎢⎣

ξ(t)
ξ(t + 1)

...
ξ(t + N − 1)

⎤
⎥⎥⎦ ,

ÊP t+k ,N =

⎡
⎢⎢⎢⎢⎣

êp(t + k)
êp(t + 1 + k)
êp(t + 2 + k)

...
êp(t + N + k)

⎤
⎥⎥⎥⎥⎦ , U 0

t,N =

⎡
⎢⎢⎢⎢⎣

�u0(t)
�u0(t + 1)
�u0(t + 2)

...
�u0(t + N )

⎤
⎥⎥⎥⎥⎦ ,

DP t,N =

⎡
⎢⎢⎢⎢⎣

dpd(t)
dpd(t + 1)
dpd(t + 2)

...
dpd(t + N )

⎤
⎥⎥⎥⎥⎦

The signal �U 0
t,N denotes a block vector of future input signals.

Note that the block vector DP t,N denotes a vector of future ref-
erence minus known disturbance signal components. The above
system matrices At+k ,N , Bt+k ,N , Dt+k ,N are of course all functions
of future states and the assumption is made that the state depen-
dent signal x(t) is calculable (if {ξ(t)} is null x̂(t|t) = x(t) can
be calculated from the model). From (36), the matrix VP t+k ,N =
(CP t+k ,N Bt+k ,N + EP t+k ,N ) can be assumed to be full-rank (deter-
mined by the weightings).

3.3 Predicted tracking error

Noting (38) the k-steps-ahead tracking error

EP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x(t + k) + VP t+k ,N �U 0
t,N

+ CP t+k ,N Dt+k ,N 	t+k ,N (40)

The weighted inferred output is assumed to have the same dimen-
sion as the control signal and VP t+k ,N used in (40) and defined
below, for N ≥ 1, is square (see (41))

⎡
⎢⎢⎢⎢⎢⎢⎣

êp(t + k)

êp(t + 1 + k)

êp(t + 2 + k)

...
êp(t + N + k)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

dpd(t + k)

dpd(t + k + 1)

dpd(t + k + 2)

...
dpd(t + k + N )

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cp t+k I

Cp t+1+kA1
t+k

Cp t+2+kA2
t+k

...

Cp t+N+kAN
t+k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x̂(t + k|t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

Ep t+k�u0(t)
Ep t+k+1�u0(t + 1)

Ep t+k+2�u0(t + 2)

...
Ep t+k+N �u0(t + N )

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

Cp t+k+1Bt+k 0
. . . 0 0

Cp t+k+2A1
t+k+1Bt+k Cp t+k+2Bt+k+1 0 · · · ...
...

...
. . . 0 0

Cp t+k+N AN−1
t+k+1Bt+k Cp t+k+N AN−2

t+k+2Bt+k+1 · · · Cp t+k+N Bt+k+N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�u0(t)
�u0(t + 1)

...
�u0(t + N − 1)

�u0(t + N )

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)

VP t,N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ep t 0 · · · 0 0

Cp t+1Bt Ep t+1 · · · ... 0

Cp t+2A1
t+1Bt Cp t+2Bt+1

. . .
...

...
...

. . . Ep t+N−1 0

Cp t+N AN−1
t+1 Bt Cp t+N AN−2

t+2 Bt+1 · · · Cp t+N Bt+N−1 Ep t+N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
VP t,N = CP t,N Bt,N +EP t,N

(41)
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Based on (35) and (38) the prediction error (ẼP t+k ,N = EP t+k ,N −
ÊP t+k ,N )

ẼP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x(t + k) + VP t+k ,N �U 0
t,N

+ CP t+k ,N Dt+k ,N 	t+k ,N − (DP t+k ,N

+ CP t+k ,N At+k ,N x̂(t + k|t) + VP t+k ,N �U 0
t,N )

(42)

Thence, the inferred output estimation error

ẼP t+k ,N = CP t+k ,N At+k ,N x̃(t + k|t)
+ CP t+k ,N Dt+k ,N 	t+k ,N (43)

where the state estimation error x̃(t + k|t) = x(t + k) − x̂(t + k|t)
is independent of the choice of control action. Also recall x̂(t +
k|t) and x̃(t + k|t) are the orthogonal and the expectation of the
product of the future values of the control action (assumed known
in deriving the prediction equation), and the zero-mean white noise
driving signals, is null. It follows that ÊP t+k ,N in (35) and the
prediction error ẼP t+k ,N are orthogonal.

3.4 Time-varying Kalman estimator in predictor
corrector form

The state estimate x̂(t + k|t) may be obtained, k-steps ahead, from
a Kalman filter [9]. These are well known, but the result below
accommodates the delays on input channels and through terms [9].
The estimates can be computed using

x̂(t + 1|t) = At x̂(t|t) + Bt�u0(t − k) + dd(t)

x̂(t + 1|t + 1) = x̂(t + 1|t) + Kf t+1
(
zm(t + 1) − ẑm(t + 1|t))

where

ẑm(t + 1|t) = dm(t + 1) + Cm
t+1x̂(t + 1|t) + Em

t+1�u0(t + 1 − k)

The state estimate x̂(t + k|t) may be obtained, k-steps-ahead, in a
computationally efficient form from [9], where the number of states
in the filter is not increased by the number of the delay elements
k . From (27), the k-steps prediction is given as

x̂(t + k|t) = Ak
t x̂(t|t) + T (k , z−1)�u0(t) + ddd(t + k − 1) (44)

The finite pulse response model term

T (k , z−1) =
k∑

j=1

Ak−j
t+j Bt+j−1zj−1−k (45)

where the summation terms in (45) are assumed null for k =
0 so that T (0, z−1) = 0, ddd(t − 1) = 0 and ddd(t + k − 1) =∑k

j=1 Ak−j
t+j dd(t + j − 1).

4 GPC for state-dependent systems

A brief derivation of a GPC controller is provided below for a
state-dependent system with input u0(t). This is the first step in
the solution of the NPGMV control solution derived subsequently.
The GPC performance index

J = E

⎧⎨
⎩

N∑
j=0

ep(t + j + k)Tep(t + j + k)

+
Nu∑
j=0

λ2
j (�u0(t + j))T�u0(t + j)|t

⎫⎬
⎭ (46)

where E{.|t} denotes the conditional expectation, conditioned on
measurements up to time t and λj denotes a scalar control signal

weighting factor. In this definition, note that the error minimised
is k-steps ahead of the control signal, since u0(t) affects the error
ep(t + k) after k-steps. By suitable definition of the augmented
system, the cost can include dynamic error, input and state-costing
terms. The future optimal control signal is to be calculated for
the interval τ ∈ [t, t + Nu], which depends on the number of steps
(Nu + 1) in the control signal costing term in (46). If the states
are not available for feedback then the Kalman estimator must
be introduced. Also recall from (43) the weighted tracking error
EP t+k ,N = ẼP t+k ,N + ÊP t+k ,N . The multi-step cost function

J = E{Jt} = E
{

ET
P t+k ,N EP t+k ,N + �U 0T

t,Nu
�2

Nu
�U 0

t,Nu
|t
}

(47)

Assuming the Kalman filter is introduced, from (47)

J = E{(ÊP t+k ,N + ẼP t+k ,N )T(ÊP t+k ,N + ẼP t+k ,N )

+ �U 0T
t,Nu

�2
Nu

�U 0
t,Nu

|t} (48)

Here the cost-function weightings on inputs �u0(t) at future times
are written as �2

Nu
= diag{λ2

0, λ2
1, . . . , λ2

Nu
}. The terms in the cost

index can then be simplified, noting ÊP t+k ,N is orthogonal to the
estimation error ẼP t+k ,N

J = ÊT
Pt+k ,N ÊPt+k ,N + �U 0T

t,Nu
�2

Nu
�U 0

t,Nu
+ J0 (49)

where J0 = E{ẼT
Pt+k ,N ẼPt+k ,N |t} is independent of control action.

4.1 Connection matrix and control profile

Instead of a single control horizon number Nu a control profile can
be defined of the form

row{Pu} = [lengths of intervals in samples number of repetitions]

For example, letting Pu = [13; 22; 31] represents three different ini-
tial controls for each sample, then two samples with the same
control used, but this is repeated again, and finally three samples
with the same control used. This enables a control trajectory to
be defined where initially the control changes every sample instant
and then it only changes every two sample instants and finally it
remains fixed for three sample intervals. Based on a control profile,
it is easy to specify the transformation matrix Tu, relating the con-
trol moves to be optimised (say vector V ) to the full control vector
(U ), that is U = Tu × V . For the above example, the connection
matrix can be defined

Tu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

U = TuV ⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t)
u(t + 1)
u(t + 2)
u(t + 3)

u(t + 4) = u(t + 3)
u(t + 5)

u(t + 6) = u(t + 5)
u(t + 7)

u(t + 8) = u(t + 7)
u(t + 9) = u(t + 7)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6

⎤
⎥⎥⎥⎥⎥⎦

In the case of the incremental control formulation, the connection
matrix

T�u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

�U = T�u�V ⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u(t)
�u(t + 1)
�u(t + 2)
�u(t + 3)

�u(t + 4) = 0
�u(t + 5)

�u(t + 6) = 0
�u(t + 7)

�u(t + 8) = 0
�u(t + 9) = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�v1
�v2
�v3
�v4
�v5
�v6

⎤
⎥⎥⎥⎥⎥⎦

Clearly, this represents a situation with Nu = 3 + 2 + 1 = 6 control
moves and involves a total of N = 3 × 1 + 2 × 2 + 1 × 3 sample
points. There are four control moves that have not been calculated
in this example, representing a substantial computational saving.
For simplicity, the same symbol will be used to represent the
connection matrix for the control and incremental control cases
(Tu), but when using it should be recalled that different definitions
will be needed. The control horizon may be less than the error
horizon and we may define the future control changes �U 0

t,N as
�U 0

t,N = Tu �U 0
t,Nu

.

4.2 State dependent GPC solution

To compute the vector of future weighted error signals note

VP t+k ,N �U 0
t,N = VP t+k ,N Tu �U 0

t,Nu
(50)

Then, from (37) and (50)

ÊP t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t) + VP t+k ,N �U 0
t,N

= D̃P t+k ,N + VP t+k ,N Tu �U 0
t,Nu

(51)

where D̃P t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t). Noting
(36) and substituting from (35) for the vector of state estimates

J = (D̃P t+k ,N + VP t+k ,N Tu �U 0
t,Nu

)T(D̃P t+k ,N

+ VP t+k ,N Tu �U 0
t,Nu

) + �U 0T
t,Nu

�2
Nu

�U 0
t,Nu

+ J0

= D̃T
P t+k ,N D̃P t+k ,N + �U 0T

t,Nu
T T

u VT
P t+k ,N D̃P t+k ,N

+ D̃T
P t+k ,N VP t+k ,N Tu �U 0

t,Nu
+ �U 0T

t,Nu
Xt+k ,Nu�U 0

t,Nu
+ J0

(52)

where Xt+k ,Nu = T T
u VT

P t+k ,N VP t+k ,N Tu + �2
Nu

. From a perturba-
tion and gradient calculation [9], noting that the J0 term is
independent of the control action, the vector of GPC future optimal
control signals

�U 0
t,Nu

= −X−1
t+k ,Nu

T T
u VT

P t+k ,N D̃P t+k ,N = −X−1
t+k ,Nu

T T
u VT

P t+k ,N

× (
DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t)) (53)

where

�U 0
t,Nu

=

⎡
⎢⎢⎢⎢⎣

�u0(t)
�u0(t + 1)
�u0(t + 2)

...
�u0(t + Nu)

⎤
⎥⎥⎥⎥⎦ and DP t,N =

⎡
⎢⎢⎢⎢⎣

dpd(t)
dpd(t + 1)
dpd(t + 2)

...
dpd(t + N )

⎤
⎥⎥⎥⎥⎦ .

The GPC optimal control signal at time t is defined from this vector
based on the receding horizon principle [10] and is taken as the
first element in the vector of future control increments �U 0

t,Nu
.

4.3 Equivalent cost-optimisation problem

The above is equivalent to a special cost-minimisation control
problem which is needed to motivate the NPGMV problem.
Let Xt+k ,Nu = T T

u VT
P t+k ,N VP t+k ,N Tu + �2

Nu
, that enters (53), be

factorised as

YT
t+k ,Nu

Yt+k ,Nu = Xt+k ,Nu = T T
u VT

P t+k ,N VP t+k ,N Tu + �2
Nu

(54)

Then, by completing the squares in (52) the cost becomes

J =
(

D̃T
P t+k ,N VP t+k ,N TuY−1

t+k ,Nu
+ �U 0T

t,Nu
YT

t+k ,Nu

)

×
(
Y−T

t+k ,Nu
T T

u VT
P t+k ,N D̃P t+k ,N + Yt+k ,Nu�U 0

t,Nu

)
+ D̃T

P t+k ,N (I − VP t+k ,N TuY−1
t+k ,Nu

Y−T
t+k ,Nu

T T
u VT

P t+k ,N )

× D̃P t+k ,N + J0

(55)

By comparison with (55), the cost function may be written as

J = �̂0T
t+k ,Nu

�̂0
t+k ,Nu

+ J10(t) (56)

where the ‘squared’ term in (55)

�̂0
t+k ,Nu

= Y−T
t+k ,Nu

T T
u VT

P t+k ,N D̃P t+k ,N + Yt+k ,Nu�U 0
t,Nu

= Y−T
t+k ,Nu

T T
u VT

P t+k ,N (DP t+k ,N

+ CP t+k ,N At+k ,N x̂(t + k|t)) + Yt+k ,Nu�U 0
t,Nu

. (57)

The cost terms that are independent of the control action J10(t) =
J0 + J1(t) where

J1(t) = D̃T
P t+k ,N (I − VP t+k ,N TuY−1

t+k ,Nu

× Y−T
t+k ,Nu

T T
u VT

P t+k ,N )D̃P t+k ,N (58)

The optimal control is found by setting the first term to zero, that
is �̂0

t+k ,Nu
= 0. This gives the same optimal control as (53). It fol-

lows that the GPC optimal controller is the same as the controller
to minimise the norm of the signal �̂0

t+k ,Nu
, defined in (57). The

vector of optimal future controls

�U 0
t,Nu

= −X−1
t+k ,Nu

T T
u VT

P t+k ,N D̃P t+k ,N = −X−1
t+k ,Nu

T T
u VT

P t+k ,N

× (
DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t)) (59)
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4.4 Modified cost-function generating GPC controller

The above discussion motivates the definition of a new multi-step
minimum variance cost problem that is similar to the minimisation
problem (56) but where the link to NGMV design can be estab-
lished. The signal to be minimised in the GMV problem involves a
weighted sum of error and input signals [11]. The vector of future
values, for a multi-step criterion

t+k ,N = PCN , tEP t+k ,N + F0
CN , t�U 0

t,Nu
(60)

where the cost-function weightings PCN ,t = T T
u VT

P t+k ,N and

F0
CN ,t = �2

Nu
. These are based on the GPC weightings in (47) and

are justified later in Theorem 1 below. Now define a minimum-
variance multi-step cost function, using a vector of signals

J̃ = E{J̃t} = E{T
t+k ,N t+k ,N |t} (61)

Predicting forward k-steps

t+k ,N = PCN , tEP t+k ,N + F0
CN , t�U 0

t,Nu
(62)

Now consider the signal t+k ,Nu and substitute for EP t+k ,N =
ÊP t+k ,N + ẼP t+k ,N

t+k ,N = PCN ,t(ÊP t+k ,N + ẼP t+k ,N ) + F0
CN ,t�U 0

t,N

=
(

PCN ,t ÊP t+k ,N + F0
CN ,t�U 0

t,Nu

)
+ PCN ,t ẼP t+k ,N (63)

This may be written as

t+k ,N = ̂t+k ,N + ̃t+k ,N (64)

where the predicted signal ̂t+k ,N = (PCN ,t ÊP t+k ,N + F0
CN ,t�

U 0
t,Nu

) and the prediction error ̃t+k ,Nu = PCN ,t ẼP t+k ,N . The per-

formance index (61) may therefore be simplified, recalling ÊP t+k ,N
and ẼP t+k ,N are orthogonal, as follows

J̃ (t) = E{J̃t} = E{T
t+k ,N t+k ,N |t} = E{(̂t+k ,N

+ ̃t+k ,N )T(̂t+k ,N + ̃t+k ,N )|t}
= ̂T

t+k ,N ̂t+k ,N + E{̃T
t+k ,N ̃t+k ,N |t}

= ̂T
t+k ,N ̂t+k ,N + J̃1(t)

(65)

where J̃1(t) = E{̃T
t+k ,N ̃t+k ,N |t} = E{ẼT

P t+k ,N PT
CN ,tPCN ,t

ẼP t+k ,N |t}. The prediction ̂t+k ,N may be simplified as follows

̂t+k ,N = PCN ,t ÊP t+k ,N + F0
CN ,t�U 0

t,Nu

= PCN ,t(D̃P t+k ,N + VP t+k ,N Tu �U 0
t,Nu

) + F0
CN ,t�U 0

t,Nu

By substituting from (54) (noting PCN , tVP t+k ,N Tu + F0
CN , t =

Xt+k ,Nu ),

̂t+k ,N = PCN , t D̃P t+k ,N + Xt+k ,Nu�U 0
t,Nu

(66)

Recall the weightings are assumed to be chosen so that Xt+k ,Nu

is non-singular. From a similar argument to that in the previous
section the predictive control sets the first squared term in (65) to
zero ̂t+k ,N = 0 and this expression is the same as the vector of
future GPC controls.

Theorem 1: Equivalent minimum variance cost problem: consider
the minimisation of the GPC cost index (46) for the system and
assumptions introduced in Section 2, where the non-linear subsys-
tem W1k = I and the vector of optimal GPC controls is given by

(53). Assume that the cost index is redefined to have a multi-step
minimum variance form (61)

J̃ (t) = E{T
t+k ,N t+k ,N |t}, where

t+k ,Nu = PCN , tEP t+k ,N + F0
CN , t�U 0

t,Nu
(67)

Let the cost-function weightings be defined relative to the original
GPC cost index as

PCN ,t = T T
u VT

P t+k ,N and F0
CN ,t = �2

Nu
.

The vector of future optimal controls that minimise (67) as follows

�U 0
t,Nu

= −X−1
t+k ,Nu

T T
u VT

P t+k ,N

× (
DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t)) (68)

where Xt+k ,Nu = T T
u VT

P t+k ,N VP t+k ,N Tu + �2
Nu

. This optimal con-
trol (68) is identical to the vector of GPC controls.

Solution: The proof follows by collecting the results above.

5 Non-linear predictive GMV optimal control

The aim of the non-linear control design approach is to ensure cer-
tain input–output maps are finite-gain m2 stable and the cost index
is minimised. Recall that the input to the system is the control
signal u(t), as shown in Fig. 1, rather than the input to the state-
dependent subsystem u0(t). The cost function for the non-linear
control problem must therefore include an additional control cost-
ing term, although the costing on the intermediate signal u0(t) can
be retained. If the smallest delay in each output of the plant is
of k-steps the control signal t affects the output k-steps later. For
NGMV, the signal costing(Fc�u)(t) = (Fck z−k�u)(t). Typically,
this weighting on the non-linear subsystem input will be a linear
dynamic operator [12], assumed to be full rank and invertible. In
analogy with the GPC problem a multi-step cost index may be
defined that is an extension of (61)

Jp = E{0T
t+k ,N 0

t+k ,N |t} (69)

Thus, consider a signal whose variance is to be minimised, involv-
ing a weighted sum of error, input and control signals [11, 13]

0
t+k ,N = PCN ,tEP t+k ,N + F0

CN ,t �U 0
t,Nu

+ Fck ,Nu�Ut,Nu (70)

The non-linear function Fck ,Nu�Ut,Nu will normally be defined to
have a simple block diagonal form

(Fck ,Nu�Ut,Nu ) = diag{(Fck�u)(t), (Fck�u)(t + 1), . . . ,

(Fck�u)(t + Nu)} (71)

Note the vector of changes at the input of the state-dependent
subsystem

�U 0
t,Nu

= (W1k ,Nu�Ut,Nu ) (72)

This is, the output of the non-linear input-subsystem W1k ,Nu , which
also has a block diagonal matrix form

(W1k , Nu�Ut,Nu ) = diag{W1k , W1k , . . . , W1k }�Ut,Nu

= [(W1k�u)(t)T, . . . , (W1k�u)(t + Nu)
T]T

(73)

IET Control Theory Appl., pp. 1–13
© The Institution of Engineering and Technology 2015 7



5.1 NPGMV control solution

Note the state estimation error is independent of the choice of con-
trol action. Also recall that the optimal x̂(t + k|t) and x̃(t + k|t)
are the orthogonal and the expectation of the product of the future
values of the control action (assumed known in deriving the pre-
diction equation), and the zero-mean white noise driving signals,
is null. It follows that ÊP t+k ,N and the prediction error ẼP t+k ,N
are orthogonal. The solution of the NPGMV control problem fol-
lows from similar steps to those in Section 3.3. Observe from
(62) that t+k ,N = PCN , tEP t+k ,N + F0

CN , t�U 0
t,Nu

and 0
t+k ,N =

̂0
t+k ,N + ̃0

t+k ,N . It follows from (70) that the predicted signal

̂0
t+k ,N = ̂t+k ,N + (Fck ,Nu�Ut, Nu )

= PCN ,t ÊP t+k ,N + F0
CN ,t�U 0

t,Nu
+ (Fck ,Nu�Ut ,Nu ) (74)

and the estimation error

̃0
t+k ,N = ̃t+k ,N = PCN ,t ẼP t+k ,N = T T

u VT
P t+k ,N ẼP t+k ,N (75)

The future predicted values of the signal ̂0
t+k ,N involve the esti-

mated vector of weighted errors PCN ,t ÊP t+k ,N , which are orthog-
onal to PCN ,t ẼP t+k ,N . The estimation error is zero-mean and the
expected value of the product with any known signal is null. The
multi-step cost index may therefore be written as

J̃ (t) = ̂0T
t+k ,N ̂0

t+k ,N + J̃1(t) (76)

The condition for optimality ̂0
t+k ,N = 0 now becomes

PCN ,t ÊP t+k ,N + F0
CN ,t�U 0

t,Nu
+ Fck ,Nu�Ut ,Nu = 0 (77)

5.2 NPGMV optimal control

The vector of future optimal control signals, to minimise (76),
follows from the condition for optimality in (77)

PCN ,t ÊP t+k ,N + �2
Nu

W1k ,Nu�Ut,Nu + Fck ,Nu�Ut ,Nu = 0

�Ut, Nu = (Fck ,Nu + �2
Nu

W1k ,Nu )
−1(−PCN ÊP t+k ,N )

(78)

An alternative solution of (77), gives

�Ut, Nu = F−1
ck ,Nu

(−T T
u VT

P t+k ,N ÊP t+k ,N − �2
Nu

W1k ,Nu�Ut, Nu )

(79)

Further simplification by noting the condition for optimality
̂0

t+k ,N = 0 may be written, from (51), (54), (72) and (74) as

PCN ,t ÊP t+k ,N + F0
CN ,t�U 0

t,Nu
+ (Fck ,Nu�Ut ,Nu ) = 0, and becomes

PCN ,t D̃P t+k ,N + (
Xt+k ,NuW1k , Nu + Fck ,Nu

)
�Ut,Nu = 0 (80)

where D̃P t+k ,N = DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t). The vector
of future optimal control becomes

�Ut,Nu = (
Xt+k ,NuW1k , Nu + Fck ,Nu

)−1

× (−PCN ,tDP t+k0,N − Cφ t x̂(t + k|t)) (81)

where from PCN ,t = T T
u VT

P t+k ,N and Cφ t is defined as

Cφ t = PCN ,tCP t+k ,N At+k ,N = T T
u VT

P t+k ,N CP t+k ,N At+k ,N (82)

An alternative useful solution follows from (80) as

�Ut,Nu = F−1
ck ,Nu

(
−PCN ,t D̃P t+k ,N − Xt+k ,NuW1k , Nu�Ut,Nu

)

= F−1
ck ,Nu

(
− PCN ,tDP t+k ,N − Cφ t x̂(t + k|t)

− Xt+k ,NuW1k, Nu
�Ut,Nu

)
.

The control law is to be implemented using a receding hori-
zon philosophy. Let CI0 = [I , 0, . . . , 0] and C0I = [

0 IN
]

so that
the current and future controls are �u(t) = [I , 0, . . . , 0]�Ut,N and
�U f

t,N = C0I �Ut,N .

Theorem 2: NPGMV state-dependent optimal control: consider the
linear components of the plant, disturbance and output weighting
models put in augmented state equation form (12), with input from
the non-linear finite gain stable plant dynamics W1k . Assume that
the multi-step predictive controls cost function to be minimised,
involves a sum of future cost terms, and is defined in vector form
as

Jp = E{0T
t+k ,N 0

t+k ,N |t} (83)

where the signal 0
t+k0,N depends upon future error, input and non-

linear control signal costing terms

0
t+k ,N = PCN ,tEP t+k ,N + F0

CN ,t �U 0
t,Nu

+ Fck ,Nu�Ut,Nu (84)

Assume the error and input cost-function weightings are introduced
as in the GPC problem (46) and these are used to define the block
matrix cost weightings PCN ,t = T T

u VT
P t+k ,N and F0

CN ,t = �2
Nu

. Also
assume that the control signal cost weighting is non-linear and is of
the form (Fc�u)(t) = (Fck�u)(t − k), where Fck is the full rank
and invertible operator. Then the NPGMV optimal control law to
minimise the variance (83) is given as

Ut,N = F−1
ck ,Nu

(−PCN ,tDP t+k ,N − Cφ t x̂(t + k|t)
− Xt+k ,NuW1k , Nu�Ut,Nu ) (85)

where Xt+k ,Nu = T T
u VT

P t+k ,N VP t+k ,N Tu + �2
Nu

and Cφ t = T T
u

VT
P t+k ,N CP t+k ,N At+k ,N . The current control can be computed using

the receding horizon principle from the first component in the
vector of future optimal controls.

Solution: The proof of the optimal control was given before
the Theorem. The assumption to ensure closed-loop stability is
explained in the stability analysis that follows below.
Remarks: The expressions for the NPGMV control (81) and (85)
lead to alternative structures for implementation, but the second as
shown in Fig. 2, is more suitable for implementation. Inspection
of the cost term (84) when the input costing F0

CN is null gives
0

t+k ,N = PCN ,tEP t+k ,N + Fck ,N Ut,N and the limiting case of the
NPGMV controller is related to an NGMV controller [12].

6 Stability of the closed loop

For linear GMV designs stability is ensured when the combination
of a control weighting and an error weighted plant model transfer
is strictly minimum phase. For the non-linear predictive control a
non-linear operator

(I + F−1
ck ,Nu

(Cφ tt+kBt+k CI0 + Xt+k ,Nu )W1k , Nu )

must have a stable inverse (shown below). It will be assumed that
the stochastic external inputs are null and the only inputs are those

IET Control Theory Appl., pp. 1–13
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Fig. 2 Implementation form of NPGMV state-dependent controller structure

due to the deterministic signals. The state

x(t) = (I − z−1At)
−1z−1(Btu0(t − k) + dd(t))

= t(Btu0(t − k) + dd(t)) (86)

x(t + k) = t+k (Bt+k u0(t) + dd(t + k)) (87)

where t = (I − z−1At)
−1z−1. The predicted state x̂(t + k|t) =

x(t + k) = t+k (Bt+k u0(t) + dd(t + k)) and from (85)

Ut,N = F−1
ck ,Nu

(−PCN ,tDP t+k ,N − Cφ t x̂(t + k|t)
− Xt+k ,NuW1k , Nu�Ut,Nu

)
= F−1

ck ,Nu

(
− PCN ,tDP t+k ,N − Cφ tt+k dd(t + k)

−Cφ tt+kBt+k u0(t) − Xt+k ,NuW1k, Nu
�Ut,Nu

)
(88)

Assuming the control costing is a linear model the condition for
optimality (88)(

Fck ,Nu + Cφ tt+kBt+k CI0W1k , Nu + Xt+k ,NuW1k , Nu

)
�Ut,Nu

= − (
PCN ,tDP t+k ,N + Cφ tt+k dd(t + k)

)
The input non-linear subsystem can be assumed finite gain m2
stable and W1k ,Nu�Ut,Nu may be written as (W1k ,Nu�Ut,Nu ) =
[(W1k�u)(t)T, . . . , (W1k�u)(t + Nu)

T]T. The vector of future
optimal controls becomes

�Ut,Nu =
(

I + F−1
ck ,Nu

(
Cφ tt+kBt+k CI0 + Xt+k ,Nu

)
W1k , Nu

)−1

× F−1
ck ,Nu

(−PCN ,tDP t+k ,N − Cφ tt+k dd(t + k)
)

(89)

The NL subsystem future outputs follows as W1k , Nu�Ut,Nu and the
future plant outputs Wk , Nu Ut,N . It follows a necessary condition
for stability is that the operator that follows is finite gain stable

Ht+k ,Nu =
(

I + F−1
ck ,Nu

(
Cφ tt+kBt+k CI0 + Xt+k ,Nu

)
W1k , Nu

)−1

(90)

6.1 Sufficient condition for stability and robustness

If the output subsystem was linear time-invariant and not subject
to uncertainty, a similar stability argument to that in [14] could
be used to argue from (89) that no cancellation of unstable modes
could occur if the controller is implemented in its minimal form.
The robustness of the solution may be considered and a sufficient
condition for stability in the presence of uncertainty can be obtained
by first noting the solution can be related to the well-known Smith
Predictor structure. To establish this equivalence consider the more
usual problem, where system outputs controlled are the same as
those measured and where absolute control is coasted. The algebra
is similar to the non-state-dependent problems considered in [13].
The controller, which should not be implemented in this form, is
shown in Fig. 3. The Tf 1(z−1) term in this solution is obtained by
writing the Kalman filter loop in terms of the operator equations
that follows

Estimator : x̂(t|t) = Tf 1(z
−1)(z(t) − d(t)) + Tf 2(z

−1)u0(t − k)

The transfer operators here

Tf 1(z
−1) = (I − z−1(I − Kf tCt+1)At)

−1Kf t−1

Tf 2(z
−1) = (I − z−1(I − Kf tCt+1)At ))−1

×
(
(I − Kf t−1Ct)Bt−1z−1 − Kf t−1Et

)

Unbiased estimates property: Observe that for the Kalman filter to
be unbiased

Tf 1(z
−1)(Ctt(z

−1)Bt + Et) + Tf 2(z
−1) = t(z

−1)Bt

The parallel paths are shown in Fig. 3, from control input are useful
if the plant has an additive uncertainty of the form W = W̄ + �W .
The diagram is shown in Fig. 3 may then be redrawn as shown in
Fig. 4.

For the sufficient condition for optimality note that the operator
Ht+k ,Nu actually represents the internal feedback loop as shown in

Fig. 3 Non-linear Smith predictor implied by NPGMV compensator structure

IET Control Theory Appl., pp. 1–13
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Fig. 4 Feedback loop when additive uncertainty included

Fig. 5. Thus the operator S1 representing the path between ϕ and
u includes this stable subsystem and the Kalman filter subsystem.
The operator S1 and uncertainty model S2 = �W can both there-
fore be assumed stable. The small gain theorem [15], can now be
invoked to provide a sufficient condition for stability. Recall this
can be used to establish input–output stability conditions for a feed-
back system. It provides a sufficient condition for finite gain Lp
stability of the closed-loop system. If two input–output stable sys-
tems S1 and S2 are connected as shown in a feedback loop, then the
closed loop is input–output stable if the loop gain ‖S1‖ · ‖S2‖ < 1,
where the norm used is any induced norm. To deal with unstable
signals, the space Lp,e (see [16]) is used, where the upper limit of
the norm summation is finite. The sufficient condition for stability
requires ‖S1‖ < 1/‖�W‖ so the gain of the inner feedback loop
term should be sufficiently small when the uncertainty is large.

6.2 Cost weightings and relationship to stability

Say there exists a proportional–integral–derivative (PID) controller
that will stabilise the non-linear system, without transport delay,
then a set of cost weightings can be defined to guarantee the
existence of this inverse and hence ensure the stability of the
closed loop. A stabilising control law can be found from cost-
function weightings derived below. Assume �2

Nu
→ 0, then from

(54) Xt+k ,Nu → T T
u VP t+k ,N VP t+k ,N Tu, and from (89)

�Ut,Nu →
(

I + F−1
ck ,Nu

(
Cφ tt+kBt+k CI0

+ T T
u VT

P t+k ,N VP t+k ,N Tu

)
W1k , Nu

)−1

× F−1
ck ,Nu

(−PCN ,tDP t+k ,N − Cφ tt+k dd(t + k)
)

In the case of a single-step cost with a through term the matrix
VP t+k ,N = Et+k ,N can be assumed square and non-singular. In the
case N = 0, VP t,N = Ep t and PCN ,t = T T

u VT
P t+k ,N = VT

P t+k ,N =
ET

p t+k , Cφ t = ET
p t+kCp t+k . Hence

u(t) →
(

I + F−1
ck ET

p t+k

(
Cp t+kt+kBt+k CI0 + Ep t+k

)
W1k,

)−1

× F−1
ck ET

p t+k

(−DP t+k , N − Cp t+kt+k dd(t + k)
)

Also assume the dynamic weighting is on the plant outputs yp(t) =
Pc(z−1)y(t) then Ep t+k + Cp t+kt+kBt+k = PcW0k ,

u(t) →
(

I + F−1
ck ET

p t+k PcW0kW1k

)−1
F−1

ck ET
p t+k

× (−DP t+k , N − Cp t+kt+k dd(t + k)
)

(91)

The term (I + F−1
ck ET

p t+k Pc W0kW1k ) may be interpreted as the
return-difference operator for a non-linear system with delay-free
plant Wk = W0kW1k . Thus, if the plant has a controller KPID
that stabilises this model, the ratio of weightings can be chosen
as F−1

ck ET
p t+k Pc = KPID.

An extension of this idea is when a set of controllers say Ki(z−1)
for i = 1, . . . , nk stabilise the system then a set of weightings can
be defined to satisfy (F−1

ck ET
p t+k Pc)i = Ki. The best robust cost

weightings can then be chosen using a technique like Monte Carlo
simulation covering a range of uncertainty [17].

7 NPGMV special simple form

In some cases, the non-linear system can be represented by the
state-dependent model only and the black-box model W1k can be
set equal to the identity W1k = I (so that W1k ,N = IN ). In this
case, u0(t) = u(t) and the control weighting involves a combination
of the constant �2

N and dynamic Fck ,N weighting terms. From (80)

PCN ,t(DP t+k ,N + CP t+k ,N At+k ,N x̂(t + k|t))
+ (

Xt+k ,Nu + Fck ,Nu

)
�Ut,Nu = 0 (92)

The vector of future controls

�Ut,N = (
Xt+k ,Nu + Fck ,Nu

)−1
(−PCN ,tDP t+k ,N − Cφ t x̂(t + k|t))

(93)

where Xt+k ,Nu = T T
u VT

P t+k ,N VP t+k ,N Tu + �2
Nu

, PCN ,t = T T
u

VT
P t+k ,N and Cφ t = T T

u VT
P t+k ,N CP t+k ,N At+k ,N .

7.1 Special weighting case

Assume the dynamic control weighting Fck (z−1) is linear, or alter-
natively, has a non-linear decomposition into a non-dynamic or
constant term F a

ck and an operator term F b
ck (z

−1), including at
least a unit-delay Fck (z−1) = F a

ck + F b
ck (z

−1). In this case, further
simplifications arise and there is no algebraic loop. Note the block
version of these functions, involves the decomposition of Fck ,Nu

into terms F a
ck ,Nu

and F b
ck ,Nu

(z−1). Hence the algorithms may

be simplified by substituting Fck ,Nu (z
−1) = F a

ck ,Nu
+ F b

ck ,Nu
(z−1).

From (92)

(PCN ,tDP t+k ,N + Cφ t x̂(t + k|t)) +
(
Xt+k ,Nu + F a

ck ,Nu

)
�Ut,Nu

+ F b
ck ,Nu

(z−1)�Ut,Nu = 0

Thence for a linear control costing

�Ut,Nu =
(
Xt+k ,Nu + F a

ck ,Nu

)−1 (−PCN ,tDP t+k ,N

− Cφ t x̂(t + k|t) − F b
ck ,Nu

(z−1)�Ut,Nu

)
(94)

where Cφ t = T T
u VT

P t+k ,N CP t+k ,N At+k ,N and PCN ,t = T T
u VT

P t+k ,N .
Similar results can be obtained when W1k (τ ) can be decomposed
as (W1k u) (t) = G0 u(t) + G1 (u(t)). This algorithm is the simplest
NPGMV solution is shown in Fig. 5.
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8 Multivariable control of a two-link robotic
manipulator

One of the application areas for non-linear predictive control is
in industrial robotics, where the reference trajectory for the robot
manipulator is defined in advance (welding or paint spraying
robots). Consider, for example a planar manipulator with two rigid
links. The objective is to control the vector of joint angular posi-
tions q with the vector of torques τ applied at the manipulator
joints, so that they follow a desired reference trajectory qd . This
problem was analysed in [18], and it was shown that a multi-loop
proportional–derivative (PD) controller could be used to control
the links to desired fixed positions.

System model: The dynamics of the system are highly non-linear
and may be described by the following continuous-time coupled
differential equations

[
H11 H12
H21 H22

] [
q̈1
q̈2

]
+

[−h q̇2 +d1 −h(q̇1 + q̇2)
h q̇1 d2

] [
q̇1
q̇2

]
+

[
g1
g2

]

=
[
τ1
τ2

]

This equation may be written in the following more concise
differential equation matrix form

H (q)q̈ + C(q, q̇)q̇ + g(q) = τ (95)

The H (q) is termed the inertia matrix, C(q, q̇)q̇ is a vector of
centripetal and Coriolis torques, and g(q) is a vector of torque
components due to gravity. The parameters d1 and d2 represent
the system damping due to friction (in the ‘ideal’ nominal case
d1 = d2 = 0). Assume the manipulator is operating in the horizon-
tal plane, so that g(q) = 0. The components of the matrix H are
defined as

H11 = a1 + 2a3 cos q2 + 2a4 sin q2,

H12 = H21 = a2 + a3 cos q2 + a4 sin q2, H22 = a2.

The parameters h = a3 sin q2 − a4 cos q2 and a1 = I1 + m1l2
c1 +

I2 + m2l2
c2 + m2l2

1 , a2 = I2 + m2l2
c2, a3 = m2l1lc2 cos δe and a4 =

m2 l1 lc2 sin δe. The following numerical values of parameters were
used for the simulation trials m1 = 1, I1 = 0.12, l1 = 1, lc1 = 0.5,
m2 = 2, I2 = 0.25, lc2 = 0.6 and δe = 30◦ (see [18]). The above

Fig. 5 Simplified NPGMV controller structure for predicted state feedback

Fig. 6 NPGMV and PID control with incremental control costing for unconstrained case, state-dependent model and free weighting choice
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Fig. 7 NPGMV design for incremental control action cases and free error weighting choice for constrained and unconstrained cases

Table 1 Variances for PD and NPGMV unconstrained and constrained
controllers

RMS RMS St. dev. St. dev.
error (q1) error (q2) (τ1) (τ2)

PD 12.20 4.21 240.45 146.90
NPGMV unconstrained 8.10 6.90 517.48 313.59
NPGMV constrained 12.75 1.27 206.23 243.84

system has the state-dependent equation form. This is clear by
rewriting the previous equations, where the invertability of the
matrix H is a physical property of the system, as

ẋq =
[

q̇
q̈

]
=

[
0 I
0 −H−1(q)C(q̇)

] [
q
q̇

]
+

[
0

H−1(q)

]
τ

y =q̈ = [
0 −H−1(q)C(q̇)

] [
q
q̇

]
+ H−1(q)τ

(96)

8.1 Two-link robot arm state-dependent solution

It was noted above that the two-link robot arm equations are in fact
in a natural state-dependent form. In this case, the input subsystem
can be replaced by the identity and all the non-linear model can
be absorbed in the state-dependent output subsystem. The control
costing term is linear in this case and hence the solution is given by
(94) and the controller can be implemented as shown in Fig. 5. The
performance of the unconstrained NPGMV controller is shown in
Fig. 6 for a changing reference and stochastic disturbance inputs.
The interaction is clearly evident leading to large torque changes.
The results for a well-tuned PID controller (actually PD terms) are
also shown in Fig. 6. Note that the PID controller did not include
any rate limits on plant inputs, as in the original publication, but the
predictive control solutions both included such limits (in the con-
strained case taken account of directly). The PID becomes unstable

with such limits and the predictive control results are therefore
impressive.

To reduce the amplitude of control signals the constrained
solution can be applied, which means applying a quadratic-
programming solution to minimise (83), using the same matrices
involved in (94). The area where the largest changes arise is illus-
trated in the expanded time-scale is shown in Fig. 7. Implementing
the constrained solution using quadratic programming is relatively
simple in this NPGMV case. It is not, of course, very meaningful
to compare the actual values of the dynamically weighted NPGMV
cost function. This only serves as a mathematical means to obtain
desired system properties and by definition the optimal NPGMV
controller will always provide the lowest cost for the NPGMV cost
function. Table 1 of variances below has therefore been computed
for the individual plant inputs and outputs, to enable a comparison
of the different controls. Clearly a dynamically weighted predic-
tive controller does not minimise the variances of these signals (this
would require a minimum variance controller). The cost function is
simply a mechanism for controller design, like frequency response
shaping of the sensitivities. This is also a multivariable problem,
and it is not therefore simply variances that are important. Clearly
cost weighting gains can easily be modified to change the impor-
tance of limiting particular inputs and outputs. Since the plant rate
limits were only applied to the predictive controls the results are
good as mentioned.

9 Concluding remarks

The NPGMV control design problem for a state-dependent system
involves a multi-step predictive control cost-function and future
set-point information. The tracking results are more general than for
NGMV designs because of the ability to distinguish between signals
that are to be penalised and those which are measured. The use of
either incremental control or control costing terms over a control
horizon and control profile determined by the connection matrix,
adds to the generality of the results. The simplified control structure
has been shown to be particularly valuable for real applications,
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and avoids any algebraic-loop problem. The NPGMV control has
the property that if the system is linear then the controller reduces
to the GPC for state-dependent systems. The NPGMV controller
offers greater flexibility compared with the NGMV and NGPCAQ2
controllers, at the expense of some additional complexity in the
implementation [19, 20].
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