

Robust and Reliable Control Systems Design

12th - 14th May 2009

Day 1 : Introduction to Robust Control

09.00	Registration
09.30	Need for Robust and Reliable Control and Assessing Stability
	(Tools for assessing the stability of linear multivariable systems)
10.15	Uncertainty in Systems and Robust Control Design Fundamentals
	(Including methods to estimate uncertainty, types of uncertainty & robustness)
11.15	Tea/Coffee
11.30	Inherent Robustness Properties of State Feedback LQ Optimal Control
	(Including stability and multivariable gain and phase margins)
12.15	Lunch
13.00	Hands-on Session: State Feedback LQ Optimal Control and Robustness
14.00	Introduction to Kalman Filtering for Control and Condition Monitoring
14.45	Hands-on Session: State Estimation for Systems with Unmeasured States using Kalman Filter
15.30	Tea/Coffee
15.45	LQG Control Design Approach for Disturbance Rejection
	(Uses the Kalman filter/observer but reduces robustness)
16.30	Hands-On Session: Use of Dynamic Cost Function Weightings to Improve LQG Designs
	(Improving robustness properties and performance)
17.00	Close

Day 2 : LQG and H-infinity Control Design

09.00	Introduction to Loop Transfer Recovery Design Methods
	(Recovering robustness of LQR designs in LQG control)
09.45	Hands-on Session: LQR/LQG and LTR Designs
	(Including cost function weighting selection for robust control)
10.45	Tea / Coffee
11.00	Introduction to H-infinity Robust Control Methods and Advantages
	(Overview of algorithms and design methods including weighting selection)
12.00	Hands-On Session: H-infinity Robust Control
	(Weighting selection procedures and design experience)
13.15	Lunch
14.00	Robust Control Design Procedures and Design Issues
	(Relationship between LQG and H-inf controllers, guidance on what to do
	and to avoid in the design process)
15.00	H-infinity Reliable Control Systems Design Methods
	(Introduction to reliable control design and hot strip mill example, introduction
	to mu analysis tool for testing and flight control design example)
15.45	Tea/Coffee
16.00	Quantitative Feedback Theory. A Powerful Robust Design Method
	(Introduction to QFT , link to H-inf and unmanned aerial vehicle example)
17.00	Close

Day 3 : Predictive and Nonlinear Control Design and Fault Monitoring with Application

09.00	Introduction to Predictive Control Design Methods
	(Advantages of using predictive control for systems with constraints)
10.00	Hands-on Session: Introducing Predictive Control Design and Results
11.00	Tea / Coffee
11.15	Introduction to Fault Detection Methods
12.00	Hands-On Session: Model based fault monitoring methods
	(Including link to fault monitoring and nuclear reactor example)
13.00	Lunch
13.45	Fault Tolerant, Safe and Reconfigurable Control
	(Including different control structures and reconfiguration methods)
14.45	Simple Nonlinear Controllers and Compensation Methods
	(Effects of nonlinearities and time delays and compensation methods)
15.30	Tea/Coffee
15.45	Hands-on Session: Introducing Nonlinear Control
	(Including cost function specification for good nonlinear robust control)
16.30	Close