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Abstract

Robotic systems for use in hazardous and unstructured environments are primarily

teleoperated. This imposes a high workload on the remote human operator, severely

limiting the efficiency of these systems. An important goal in robotics research is to allow

the operator to interact with the robot at a much higher level than at present, thereby

increasing the system's effectiveness. One prerequisite for this is the accurate and automatic

control of the robot.

This thesis presents a dynamic model of a hydraulically actuated manipulator,

typical of the robots used in the subsea domain. The model provides an insight into how the

manipulator behaves and its associated nonlinearities. It is also used for simulation

purposes and is validated experimentally.

Adaptive control of the manipulator is proposed as these strategies can

automatically accommodate wide changes in operating conditions, such as payload and

manipulator configuration. The adaptive scheme used is a self-tuning pole placement

controller, and is initially applied to the independent control of the experimental

manipulator's joint angles. This demonstrates the feasibility of such a controller, and its

associated benefits over conventional fixed gain controllers.

To realise complex constrained motion tasks, a hybrid position/force controller is

then considered. Here the end-effector positions and forces are controlled simultaneously

in orthogonal directions in the Cartesian workspace. A fixed gain hybrid position/force

controller is developed to demonstrate the capabilities that such a scheme provides.

A multivariable self-tuning pole placement controller is then applied to the hybrid

position/force control problem. Results are presented showing the ability of the controller

to cope with varying operating conditions, and its consequent benefits over an equivalent

fixed gain controller.
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Chapter 1

Introduction

1.1 Introduction

Robot evolution is driven by two distinct requirements. The first, and what is often

considered the primary use for robots, is increasing productivity, whether on a automotive

production line or for automated fruit picking. The second rationale for using robots is

safety. Robots can perform tasks that would otherwise be too hazardous for humans, for

example in the space, nuclear or subsea domains. It is this latter reason that has provided

the motivation for the work in this thesis.

Generally, robots used for increasing productivity exhibit little or no intelligence.

They are taught exactly how to perform a task and repeat that sequence of commands a

fixed number of times. Thus, in manufacturing, robotic workcells are designed to be

structured to eliminate the occurrence of unexpected events which the robot cannot cope

with. Conversely, robots that operate in hazardous environments cannot be pre-programmed

as the workspace is often unstructured and subject to changes. Consequently, the robot must

be able to react safely to any unpredictable incidents.

To meet the requirements for operation in hazardous environments, robots are

currently teleoperated where a human operator controls every aspect of the robot from a

remote location [1.1, 1.2]. Cameras mounted at the remote worksite allow the operator to

see what is in the vicinity of the robot, enabling the required task to be carried out.

Movements of the robot are achieved using a master-slave arrangement, where the remote
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slave robot follows any motions that the operator makes with a suitable master input

device.

There are many problems associated with teleoperation, the main ones being :-

     • The two-dimensional image from the camera and lack of depth cues in the scene

impedes the operator in visualising the three-dimensional workspace [1.1].

     • There are instances where the visibility may be reduced, either by object occlusion

or turbidity, in which case the operator effectively works blindfolded.

     • The video image provides no tactile information to the operator, making tasks that

involve contact difficult to perform.

     • In certain situations there may be delays between the robot and operator sites, for

example when teleoperating space robots. These delays can lead to severe control

problems, since the operator is acting on the basis of information that may be a few

seconds old [1.2].

These problems result in a high workload for the operator and severely limit the

overall effectiveness of these systems. However, the reason that this type of system is

employed so widely is that there is no viable alternative means of coordinating and

controlling the robot in these unstructured and hazardous environments.

1.2 Subsea Teleoperated Robots

Divers have traditionally performed underwater tasks, at great risk to themselves

and financial cost to the offshore oil and gas industries. Additionally, the depths to which

divers can operate is strictly limited, restricting the potential for subsea exploitation [1.3].

Consequently, there is much interest in subsea robotic systems to reduce and even eliminate

the need for divers for subsea intervention work.
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A typical underwater robot comprises one or more manipulators mounted on an

unmanned Remotely Operated Vehicle (ROV) which is teleoperated from on board a

surface ship. The two sites are connected by a tether, used to pass power, telemetry and

video images. The manipulators used are almost exclusively hydraulically actuated (as

opposed to electrically powered robots that dominate production lines) due to their

mechanical robustness and large power to weight ratio.

The problems associated with teleoperation, highlighted above, are especially

relevant to these subsea robotic systems, as the operator has to teleoperate both the ROV

and manipulator. This is compounded by the poor quality of underwater images, almost

total lack of depth cues and frequent loss of visibility [1.4]. Consequently, the operators of

these systems are only capable of performing relatively simple tasks and can only work for

short lengths of time before becoming mentally fatigued.

To provide the operator with more workspace feedback, force reflecting systems are

available where the forces being exerted on the remote slave robot can be 'felt' by the

operator through an active master mechanism. However, these systems have only limited

effectiveness as they actually place additional burden on the operator who is now part of

the control loop [1.5]. Furthermore, the forces cannot be controlled to a specified level,

relying on the operator to adjust the pressure that he, or she, is feeling.

Therefore, removing the operator from the loop is a major goal of subsea robotics

research.

1.3 Robot Teleassistance

At present, full autonomous operation of robots remains a distant goal which

requires input from all aspects of robot technology, including control, artificial intelligence

and workspace sensing. An intermediate goal is that of achieving teleassistance [1.4, 1.6],

where the operator supervises the robot and computers automatically realise low level tasks
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Figure 1.1 Teleassistance Functional Architecture

such as obstacle avoidance and trajectory following. Therefore, the operator interacts at a

higher level than with teleoperation, alleviating the problems highlighted above and

improving the efficiency and capabilities of these robots.

Various functional components are required to realise teleassistance [1.7], and these

are shown schematically in Figure 1.1. The task planning function provides the operator

with an interface to direct and supervise the actions of the robot. The level of sophistication

embedded in the task planner will govern how reliant the robotic system is upon the

operator. For instance, implementing primitive actions, such as 'move', 'grasp' and 'align',

would require little intelligence, however, automatically sequencing these actions to

perform a complete task autonomously is rather more difficult [1.8].
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Motion planning, workspace sensing and dynamic control are fundamental to

teleassistance, since they remove the burden of control from the operator. The motion

planning function determines the robot motions required to meet the commanded actions

of the task planner, avoiding problematic robot configurations and obstacles [1.9].

Knowledge about target objects and obstacles in the vicinity of the robot is acquired by the

workspace sensing sub-system [1.10].

The dynamic control function realises the required robot motions to achieve the

specified actions, and so interfaces directly with the robot. The controlled variables can be

positions, velocities or interaction forces, the latter being used to realise tasks such as

grinding and assembly operations.

This thesis investigates the dynamic control of a typical subsea robot in the context

of teleassistance, as defined by Figure 1.1. The task planning, motion planning and

workspace sensing problems are not addressed here. It should also be noted that this work

is concerned with the operation of a single manipulator , rather than the ROV/manipulator†

system as a whole, and hence assumes that the manipulator is on a stationary base. This

assumption may seem restrictive, but parallel research is addressing the problems of ROV

stabilisation [1.12] and coupled control of the manipulator and ROV [1.13].

Though the work presented in this thesis is focused on this specific application area,

the conclusions drawn could be applied to many other robotic systems.

1.4 Robot Control

When manipulators are employed offshore, tasks are performed under unknown and

changing conditions, for example variations in payload. Currently, remote manipulators are
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equipped with relatively simple controllers and are incapable of coping with these changes.

However, this is adequate for teleoperated systems because the operator can manually

correct for any errors arising from the poor control by looking at the video image and

adjusting the master arm accordingly.

It is therefore apparent that if teleassistance is to be realised and the operator

removed from the loop, then accurate and automatic control of the robot is needed.

Furthermore, the controllers used should be able to maintain accuracy in the presence of the

uncertain and changing conditions associated with subsea tasks. It is these fundamental

requirements that have motivated the work in this thesis.

Such controllers could also be used to automatically realise more complex tasks. For

instance, control in Cartesian space is feasible, allowing trajectories defined in the three-

dimensional workspace to be followed automatically. This is problematic to achieve using

teleoperation, since operators find it difficult to move the spatially correspondent master

arm along a predefined spatial trajectory with any degree of accuracy.

Another beneficial type of control is the control of the forces and torques being

exerted by the manipulator on its environment. This can facilitate tasks that would

otherwise be problematic to complete without some form of tactile feedback. For example,

when mating a connector and socket under teleoperation, it is difficult to align the two parts

with sufficient positional accuracy and the tendency is to for them to jam. This type of task

can be readily achieved using force control, which can automatically align the manipulator

holding the connector as it is inserted, increasing the probability of successful completion

[1.14]. This task could also be achieved using a force reflecting teleoperation system, but

as described earlier these schemes are far from ideal.

Regarding the uncertain and changing conditions, the simple fixed gain controllers

currently used can only be tuned to work well under one particular set of operating

conditions and degradation occurs once these change. So, to provide an adequate stability
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margin over a wide range of conditions, these fixed gain controllers are tuned for the worst

circumstances likely to be encountered. Consequently, sub-optimal operation is manifest

for the majority of situations encountered during a typical task.

Therefore, it follows that a control scheme which can accommodate the unknown

and changing conditions would be beneficial to subsea manipulation systems. This can be

achieved by employing an advanced controller such as a robust controller which is

insensitive to plant variations, or an adaptive controller which can automatically take such

changes into account [1.15].

Therefore, the dynamic control of a subsea robot is required to provide :-

     • Accurate control under unknown and changing conditions, enabling the operator to

be removed from the loop and thereby improving the efficiency of such systems.

     • Enhanced capabilities, enabling the robot to automatically perform complex tasks

such as simultaneous control of Cartesian positions and forces, allowing automatic

trajectory following and part mating.

This is just one, albeit important, area of research that is required to place more

intelligence at the remote manipulator, leading to semi-autonomous and perhaps even fully

autonomous robots. For subsea robotics, this is a significant step towards cutting the tether

between the ROV and the surface.

A final motivation for this work is that many advanced control schemes proposed

by the robotics research community, have only been applied to simulations or specialised

laboratory robots. These often bear little resemblance to real industrial robots, and

particularly hydraulically powered manipulators, to which these controllers must eventually

be applied.



- 8 -

1.5 Thesis Organisation

This thesis opens with an introduction to the field of robot control, then the

manipulator used is described and the control schemes proposed are subsequently

developed. Both simulation and practical results are presented and compared to results

obtained from conventional fixed gain controllers. A more detailed description of the

individual chapters follows.

Chapter Two presents a broad overview of robot control research, discussing the

various approaches that have been proposed in the context of this application. The concepts

of independent joint control and multivariable Cartesian control of robots are introduced.

The requirements for suitable controllers are highlighted and self-tuning pole placement

schemes are proposed.

A mathematical model of the manipulator used in this work is derived in Chapter

Three. The model covers both kinematic and dynamic aspects of the manipulator, as well

as detailed mathematical analysis of the actuators used on this particular robot. This model

provides an insight into the operation of the hydraulic manipulator and is used during the

simulation phase which precedes the practical implementation of the controllers.

The theory of self-tuning controllers is discussed in Chapter Four. Initially, single-

input single-output (SISO) controllers are derived and discussed in the framework of

independent joint control. The theory is then extended to multi-input multi-output (MIMO)

systems, which is applicable to the multivariable control of Cartesian positions and forces.

Chapter Five presents the results of the SISO self-tuning controller applied to the

experimental manipulator, and comparisons are made with the results from a fixed gain

controller. Real-time implementation and operational issues are discussed.

A hybrid position/force control scheme is then developed to perform simultaneous

Cartesian position and force control. Results from the application of a fixed gain hybrid

position/force controller to the experimental manipulator are presented in Chapter Six. The
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limitations of this scheme under typical operating conditions are demonstrated.

Chapter Seven presents the results of a MIMO self-tuning hybrid position/force

controller. The benefits that it provides over an equivalent fixed gain scheme are illustrated.

Furthermore, a brief comparison between this and another form of advanced controller,

specifically a robust variable structure controller, is also given.

The final chapter of this thesis, Chapter Eight, summarises the work presented and

draws relevant conclusions. The author's contributions to the field of robot control are

discussed, together with suggestions for areas of future work.
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Chapter 2

Manipulator Control Strategies

2.1 Introduction

The introductory chapter highlighted the need for accurate manipulator control to

realise both teleassisted and fully autonomous systems. Currently, offshore manipulators

are teleoperated and rely on the human operator to monitor and correct for inaccuracies in

the control. Advanced control techniques will improve the performance of such systems,

allowing the operator to be removed from the control loop and placed in a more supervisory

role, thereby increasing the productivity of the system as a whole. Furthermore, advanced

control strategies can automatically realise more complex tasks, such as trajectory following

and the mating of parts, that are difficult to achieve under teleoperation. This would

enhance the range of tasks that the manipulator could achieve.

Any control system must accommodate the wide variations in manipulator

dynamics, which arise due to changes in payload, acceleration and configuration. This

requirement is particularly important for manipulators operating in unstructured

environments. These systems have unknown and changing operating conditions, implying

that the manipulator's motions and appropriate control actions cannot be determined a

priori. The control of such systems is of great interest and it is the application of advanced

control schemes to improve the absolute accuracy of such manipulators that is the

motivation behind this thesis.

For manipulators that operate in well defined environments, such as manufacturing
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workcells, improved controller performance is not so crucial. This is because the variations

mentioned above, though still present, are consistent and are easily accommodated by the

sequence of predetermined commands that they execute. Consequently such robots are

more concerned with repeatability, rather than absolute accuracy. Nevertheless, advanced

control schemes can provide additional functionality and some examples of this are also

discussed within this thesis.

This chapter starts by describing the problems associated with manipulator control.

The different control schemes that have found use are then reviewed, first from the

perspective of the required action of the controller, and secondly looking at the various

control techniques available. The self-tuning controller developed in this thesis is placed

in context of this review, and previously proposed self-tuning manipulator controllers are

described in detail.

2.2 The Manipulator Control Problem

The requirement for manipulator control primarily stems from the fact that motion

of the manipulator is provided by actuators at each joint that generate forces or torques. If

an actuator can directly execute a desired trajectory, as in the case of a stepper motor, open

loop control will suffice. These systems are rarely used due to their limited physical

capabilities, and so some form of control algorithm is invariably needed.

Manipulator control has been the subject of many years research, and continues to

attract much attention. The reason for this is the many difficult challenges posed by these

systems, for instance :-

    • the highly nonlinear dynamics of both manipulator and actuator, including inertia,

gravitational, Coriolis and centrifugal effects, friction, mechanical flexibility,

backlash, hysteresis and actuator geometry.
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    • accurate control is required over a wide range of operating conditions.

    • there is cross-coupling between neighbouring inputs and outputs of the system.

    • the system dynamic parameters are time varying, for example due to changes in

payload, configuration, speed of motion and component wear.

These problems are compounded by the subsea application considered here :-

    • the unstructured workspace requires a reactive system, so tasks cannot be

predefined and the control action cannot be determined a priori. This precludes

certain types of control.

    • operating conditions are unknown and time varying. Uncertainties in environmental

parameters, such as contact stiffness, are important.

    • offshore manipulators are crude when compared to typical laboratory robots, and

generally sacrifice performance and accuracy for mechanical robustness. In

addition, limited instrumentation is available on these manipulators.

    • the manipulator used here utilises direct drive actuators rather than a gear or belt

transmission as is common on most manipulators. Gearing reduces the inertia and

disturbances as seen by the actuator, by as much as 100:1. Consequently, direct

drive manipulators experience a much greater variation in dynamics than those that

use transmissions.

    • subsea robots are almost exclusively hydraulically actuated and the large payload

capacity of these robots exacerbates the nonlinearities of the system. For instance,

the Slingsby (SEL) TA9 manipulator used in this study can handle payloads of up

to 80 kg, about 2.5 times its own weight. Further, the actuator itself is highly

nonlinear due to compliance, leakage and nonlinear flow of the hydraulic fluid.

    • additionally, the hydraulic direct drive actuator used here does not have the same
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benefits of minimal friction and backlash as does a typical electrical direct drive

actuator.

There are many different manipulator control techniques available, with the

particular application and the manipulator itself determining which is most appropriate. For

example, force measurements are generally noisy so controllers that use signal derivatives

should be avoided for force control. Similarly, a controller for a robot with a gearbox would

have a different set of specifications to one for a direct drive manipulator, since the gearing

decreases the inertial effects seen by the actuators by as much as 100:1.

2.3 Manipulator Control Schemes

Manipulator controllers can be classified into two broad categories, namely joint

space control schemes and Cartesian space control schemes. Joint space schemes have

control loops local to each joint of the manipulator, whereas Cartesian space schemes have

control loops acting on Cartesian space variables.

This classification can also be applied to controllers that perform constrained

motion control, that is where the manipulator is in contact with an object and the contact

force or torque is controlled. However, there are additional categories of control strategy

associated with force control, which are distinct to those for unconstrained motions.

This section introduces the various control structures used for both unconstrained

and constrained motions, with the controller itself being regarded as a "black box". The

various control techniques used for manipulator control will be described in Section 2.4.

2.3.1 Joint Space Control Schemes

A joint space control scheme uses individual controllers operating at each joint of
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the manipulator. These control the angle, velocity or torque of each joint  independently of†

the other joints in the manipulator, resulting in a simple single-input single-output (SISO)

controller. These schemes work well when the robot is moving slowly, where any coupling

between neighbouring joints is minimal. However, at high speed these interactions can be

significant and act as disturbances on the independent controllers, with consequent

degradation in performance.

Manipulation tasks performed by robots are generally specified in Cartesian space,

whether it be relative to the end-effector or with reference to some global coordinate

system. A transformation is therefore required to translate the desired Cartesian space

motions into appropriate joint space motions. This transformation is referred to as the

inverse kinematics of the manipulator, and is a nonlinear function of joint angles and link

lengths. The resulting controller structure is shown in Figure 2.1a, where desired Cartesian

positions, X , are transformed into desired joint angles, � , which are then controlled byC
d d

the independent joint space controllers. This structure can also be applied to control of

velocities, in which case the required transformation is the inverse Jacobian.

The solution to the inverse kinematics (and Jacobian) is complex for all but the

simplest of manipulators. Indeed, depending upon the manipulator configuration, there may

be no, multiple or infinite solutions [1.8]. The solution to the inverse kinematics and

Jacobian are described in Chapter Three, however the above mentioned problems

associated with these inverses are not addressed in this thesis.

2.3.2 Cartesian Space Control Schemes

In Cartesian space control schemes the Cartesian variables, either position or

velocity, are controlled directly. This can be achieved in two ways, either by transforming
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Figure 2.1 Joint Space and Cartesian Space Control Schemes

the errors in Cartesian space into errors in joint space and then using joint space controllers,

or by controlling directly in Cartesian space. The former is an extension of the joint space

control schemes and is shown in Figure 2.1b, whereas the latter treats the robot as a single

multi-input multi-output (MIMO) system, as shown in Figure 2.1c.

Both methods use the forward kinematics in the feedback path to determine the

position of the manipulator's end-effector from the measured joint angles. Alternatively, for

a Cartesian velocity controller, the Jacobian would be used in the feedback path. These

transformations are again nonlinear functions of joint angles and link lengths, but are much

less problematic than their associated inverse functions.



- 16 -

The controller structure of Figure 2.1b uses the inverse Jacobian to transform the

errors in Cartesian space into joint space. These joint space errors are then acted on by the

independent SISO joint space controllers, which again have the limitation that the

performance can degrade if coupling becomes significant. Additionally, since the inverse

Jacobian varies with the manipulator configuration, the gain and hence the response of the

controlled system changes as the robot moves throughout the workspace [2.1]. The SISO

joint controllers must accommodate these variations to maintain closed loop performance.

One advantage of this approach is that the resulting controller implementation is still

relatively simple.

A similar scheme to the one just discussed, utilises independent SISO workspace

controllers, with the Jacobian transpose transforming the outputs of the controllers into

joint space commands [2.1]. This scheme has exactly the same features and limitations as

the one shown in Fig 2.1b.

The controller structure shown in Figure 2.1c uses a MIMO controller that operates

directly on the Cartesian space errors. These schemes have the advantage that they can

compensate for any coupling between joints, giving improved control when the manipulator

is moving quickly.

Cartesian space controllers are preferable to joint space controllers when complex

manipulations are to be performed, since both the task and desired performance criterion

are naturally specified in the Cartesian frame of reference. Furthermore, some complex

manipulations are difficult to realise using purely independent joint level controllers, for

example the control of the contact forces during constrained motions. However, these

benefits are at the expense of increased controller complexity.

2.3.3 Constrained Motion Control Schemes

Many tasks require the control of contact forces, for example grinding and assembly
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operations. These tasks cannot be achieved by controlling the position of the manipulator

since the high rigidity of the robot will produce large and potentially catastrophic forces for

even the smallest of positional errors. Therefore, control of end-effector forces is essential

for these operations, which leads to an increase in effective positional accuracy of the

manipulator.

One simple way to alleviate this conflict is to use passive compliance, by

introducing a mechanically soft device that reduces the effective stiffness of the robot. One

such mechanism used for peg-in-hole insertions is called remote centre compliance. Passive

compliance devices are usually specific to a particular task, and the forces are not directly

controlled and some positional accuracy is lost.

Direct control of the force exerted by a manipulator is termed active compliance,

and since this is programmed rather than a physical mechanism, the characteristics can be

changed to suit different operations. One of the simplest ways to achieve active compliance

is to reduce, or "soften" the gains of the position control loops, thereby creating a

manipulator that exhibits an appropriate stiffness.

There are many different approaches to realise active compliance, and attempts to

categorise the various schemes is the subject of many review papers [2.2, 2.3]. The most

natural division between the strategies is the distinction between explicit force control and

implicit force control.

The fundamental difference between these two approaches is that explicit force

control directly controls the force, whereas implicit force control regulates the force via an

inner position or velocity loop. Schematic diagrams of these schemes are shown in Figure

2.2, and since specific controllers can be derived in either Cartesian or joint space, the

required transformations are omitted in the interest of clarity and generality.
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Figure 2.2 Explicit and Implicit Force Control Schemes

Explicit Force Control

Explicit force control uses the error between desired and measured forces to directly

compute the control signals applied to the actuators, Figure 2.2a. The controller can be

formulated in either Cartesian or joint space, with the latter using the Jacobian transpose

to transform the Cartesian force errors into joint space errors, which are then acted upon by

independent joint space controllers. These two approaches follow the discussion of the

previous section, corresponding to Figures 2.1c and 2.1b respectively.

Implicit Force Control

Implicit force control uses an outer force control loop which surrounds an inner

position or velocity loop which provides the control to the actuators, Figure 2.2b. The

principle behind this is that the force controller determines suitable positions or velocities

that would realise the desired forces. These are used as the set-point for the inner controller,

which causes the robot to move and generate the required force. The inner controller can



- 19 -

(2.1)

be formulated in either Cartesian space or joint space, as described in the previous section,

with all three schemes shown in Figure 2.1 being applicable. Again, the Jacobian transpose

provides the transformation from Cartesian force errors to joint space errors where required.

The idea of implicit force control was first developed by Salisbury [2.4], where the

force is regulated by an inner loop that controls the position of the robot in the direction of

the constraint surface. The gain of the outer force loop determines the effective stiffness of

the robot in the specific direction, and hence this method of force control is referred to as

stiffness control.

An ideal position controller has infinite stiffness since it completely rejects force

disturbances, whereas an ideal force controller has zero stiffness since it maintains a contact

force, irrespective of position. The concept of stiffness control allows the stiffness of the

manipulator to be specified by the designer between these two extremes.

This is achieved by adjusting the desired positions, X , that generate the desiredC
d

forces, F , using the following expression in the outer controller :-C
d

where K  is controller gain, and can be interpreted as stiffness of manipulator, X  is thep e
C

position of the constraint surface. Therefore, the outer force controller should ideally

contain a model of the interaction between the robot and environment, though variants of

stiffness control have been suggested where this requirement is relaxed. Some reported

stiffness control schemes do not use a force reference, and merely maintain a prescribed

relationship between force and position, regardless of absolute values [2.5].

Whitney [2.6] proposed a similar implicit force control scheme, referred to as

damping control, which utilised an inner velocity control loop to provide better stability

than stiffness control. A practical extension of this was reported by Youcef-Toumi [2.7].

Both of these implicit schemes were generalised in the work on impedance control
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developed by Hogan [2.8], which used both position and velocity inner loops. The outer

controller is then designed so that the robot behaves like a combination of a spring and a

damper, termed the target impedance. This again governs how compliant the robot appears,

and is set so as to realise the required task. Recently this work has been revisited [2.9] and

equivalence between implicit and explicit force control has been shown for certain

impedance control formulations.

Implicit controllers tend to be more robust to parameter variations than explicit

schemes. However, Stoki� [2.10] reported that they are slower and less accurate due to

determination of the equivalent positions/velocities corresponding to the desired forces, this

being due to inaccurate kinematic models and disturbances such as friction.

Few tasks can be achieved using the control of end-effector forces alone, and

simultaneous control of end-effector position is also needed to realise practical tasks, such

as the mating of parts and sliding motions. Forces are controlled in constrained directions,

while positions are controlled in the orthogonal unconstrained directions.

An implicit force control scheme can realise simultaneous position/force control by

using suitable stiffness in the appropriate directions, high stiffness in position controlled

directions and low stiffness in those that are force controlled. This is implemented by

specifying appropriate values for the diagonal elements of K  (a 6×6 matrix for the fullp

Cartesian space problem) in Equation 2.1.

Another approach for simultaneous position/force control was first suggested by

Paul [2.11]. He partitioned the manipulator's actuators into two sets; one to control the

position over a surface and the other to control the force normal to the surface. This is

simple for Cartesian robots whose orientation coincide with the constraint surface. However

it is too simplistic for use with a generalised manipulator operating over a generalised

surface.
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Figure 2.3 Hybrid Position/Force Control [2.12]

A more comprehensive scheme was proposed by Raibert [2.12], in which the errors

in the position and force sub-spaces are controlled by two independent controllers. The

outputs from these controllers are then summed, giving the actuator drive signal which

represents that particular joint's contribution to satisfying both the position and force

commands. This control strategy, referred to as hybrid position/force control, is shown in

Figure 2.3. A Cartesian velocity controller can be used to augment or replace the position

controller to provide improved stability.

The key element within the hybrid position/force controller is the compliance

selection matrix, S  = diag[s , s , .., s ], where n is the number of degrees of freedom (DOF)C 1 2 n

of the manipulator. This determines which directions are to be position controlled (s  = 0 )i

and which are under force control (s  = 1 ), where i � {1, 2, .., n}.i

The original formulation [2.12] did not prescribe a particular control law, rather it

was presented as a control architecture. It is essentially an extension of a Cartesian position

controller that allows force control in orthogonal constrained directions. The position

controller can be designed using any one of the schemes given in Figure 2.1, and similarly

the force controller can be either explicit or implicit. Thus, one important advantage of
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having separate position and force controllers is that they can be developed separately,

using techniques appropriate to that mode of control.

Raibert [2.12] illustrated the concept using an example with fixed gain joint space

PID controllers for the position controller (cf. Figure 2.1b), and explicit force control

implemented using fixed gain joint space PI controllers. Many other control schemes have

been applied to this general framework. For instance, Zhang [2.13] formed the position

errors in joint space using the inverse kinematics of the manipulator, resulting in the

structure given in Figure 2.1a. A further technique is the Parallel Approach, presented by

Chiaverini [2.14], where the force and position controllers act on the full-dimensional space

without using the selection matrices. Conflicts between the position and force controllers

are managed by a rule based priority strategy. Hybrid position/force controllers have also

been reported with both implicit force control [2.15, 2.16, 2.17] and explicit force control

[2.18, 2.19].

The hybrid position/force controller has been shown to be unstable for certain

manipulator configurations [2.20, 2.21], even when the manipulator Jacobian is well

conditioned. However, Fisher [2.22] corrected an inappropriate transformation, the use of

the inverse Jacobian, solving the instabilities reported in the earlier papers. Many papers

have been written addressing problems of stability and the different implementations that

are possible within the structure of hybrid position/force control, and a good summary of

this work is presented in [2.23].

2.4 Methods for Robot Control

There is an extensive body of research on the application of advanced control to

robotics, and it is the subject of many books [2.24, 2.25, 2.26], yet virtually all present day

industrial robots are controlled using simple fixed gain PID controllers. Whilst this is

primarily due to their simplicity, a lack of understanding about and scepticism towards



- 23 -

advanced controllers also exists. It has already been noted that advanced controllers can

offer improved control, in terms of accuracy and speed, over a wider range of operating

conditions. Furthermore, advanced actions can be realised using strategies such as Cartesian

space control and hybrid position/force control, thereby widening the range of tasks that can

be automated.

Any advanced controller must be implemented on a digital computer due to its

complexity. Indeed this is often the required implementation as sensors and the interfaces

to other sub-systems, such as vision and planning functions, are often computer based.

The previous discussion introduced the various structures that are available for robot

control, with the actual controller being treated as a "black box". This section looks at the

different control techniques that can be employed within these structures, and are grouped

into well know categories. Distinctions between independent SISO joint space controllers

and MIMO Cartesian space controllers will be highlighted where appropriate.

2.4.1 Model Based Control Techniques

Fixed gain PID controllers are widely employed for manipulator control. A

proportional-derivative controller is the ideal structure to control a pure inertia, since the

resulting closed loop system is second order with pole locations determined by the

controller gains. However, as shall be shown in Chapter Three, centrifugal, Coriolis,

gravitational and friction effects are also present in the manipulator dynamics. An integral

term is often used to remove steady state errors caused by these terms, but the dynamic

effects are more difficult to compensate for. Furthermore, such fixed gain controllers are

only tuned for one particular set of conditions, and if these change the control action will

degrade. To guarantee stability the controller is often tuned for the worst possible situation,

and hence the system will have a slow, sub-optimal response for most conditions.

Whiting [2.27] successfully extended a PID control scheme to cope with
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nonlinearities arising from payload variations in an electrohydraulic actuator. Another

application of PID control to a hydraulic actuator was made by Liu [2.28], who developed

an optimal tuning method to meet a set of defined performance and stability requirements.

If a controller is designed with knowledge of the system dynamics, then variations

in operating conditions can be accommodated and the system response maintained. These

methods are referred to as model based controllers, and can range from simple gravitational

compensation schemes to feedback linearisation of the full manipulator dynamics. Clearly

the suitability of a model based controller is dependent upon how well the system under

control is known.

An ideal model based controller consists of the inverse of the system dynamics,

used as a pre-compensator to the actual system. The control inputs required to meet the

desired positions, velocities and accelerations can then be calculated directly from the

inverse system model. Thus, the system is driven open loop with perfect cancellation

between the inverse dynamics and the real system.

Obviously this is impractical as no real system is known perfectly, and any

unmodelled effects will not be compensated. Feedback is used to alleviate this, and can be

introduced by augmenting the open loop model based controller with a classical, usually

fixed gain PID, feedback controller. These two controllers are often referred to as the

primary controller for the model based part, and the secondary controller which maintains

set-point tracking in the presence of modelling errors and unmodelled disturbances. This

approach is shown in Figure 2.4a for a SISO joint angle controller, and is termed a

feedforward model based controller. This strategy is equally applicable to Cartesian

position, velocity or force control, providing a suitable model of the system exists.

The primary controller is designed using any available knowledge of the system

under control. Primary controllers which contain a complete robot model were first

proposed by Paul [2.29] and Bejczy [2.30], and are referred to as computed torque
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Figure 2.4 Model Based Controllers

controllers. This name arises since the primary controller computes the torque required to

follow the desired positions, velocities and accelerations from the full manipulator model.

Consequently these schemes are computationally intensive as the model equations involve

many complex trigonometric functions.

Simpler schemes exist which use only part of the manipulator model in the primary

controller, such as compensation for gravitational and kinematic effects [2.31]. The

resulting controller is more practical since the gravitational part of the model is relatively

simple and its parameters are often well known. This reduces the amount of integral action

required in the secondary controller, since the primary controller provides the "holding

torque" that maintains the robot's position in the presence of gravity. This decreases the
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(2.2)

tendency for limit cycles in the system output, which arise from interactions between the

integral action and friction present at the joints of the robot.

Other feedforward control strategies have been proposed, such as using the inertia

terms of the robot dynamics. Again this is relatively simple and can be applied either to the

joints independently, or to the robot as a whole thereby compensating for any coupling

between joints. Force control signals are commonly applied in this way, using the Jacobian

transpose to determine the joint torques required to realise a specific end-effector force.

Another way of reducing the computational burden of these model based schemes

is to use a linearised model of the system under control. This can take the form of a state-

space controller designed to position the poles of the closed loop system, or to optimise

some performance criterion. However, the linearised model quickly becomes inappropriate

as the manipulator moves throughout its workspace, and hence degrades the control. This

approach may be effective if deviations from the linearisation point are small, or

alternatively if different linearised models are used as the robot moves along its trajectory.

An alternative approach, which has attracted much theoretical work, uses model

based feedback to linearise and decouple the manipulator. This method, referred to as a

feedback model based controller, is shown in Figure 2.4b, again for a SISO joint angle

controller for clarity. Here, the inner primary controller is designed using the inverse system

dynamics to give an ideally decoupled and linearised system. For a manipulator, the

combined primary controller and system can ideally be reduced to a set of decoupled double

integrators :-

where v is the input to the nominally linear system. Therefore, the primary controller can

be viewed as an input transformation that moves the problem from choosing desired torque

inputs, which is difficult, to choosing acceleration inputs, which is easier.
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(2.3)

It is then a simple task to design a secondary controller that regulates the nominally

linear system, giving the required closed loop system response. The secondary controller

also compensates for errors in the model based primary controller, to ensure set point

tracking and disturbance rejection. This approach is also occasionally referred to as

computed torque control, but differs from previous law since it uses feedback rather than

feedforward.

Feedback linearisation is usually performed in joint space, however it can be applied

using a manipulator model expressed in Cartesian space. This was first proposed by Khatib

[2.32] and is known as the operational space formulation. This results in a nominally linear

and decoupled Cartesian space system :-

The secondary controller is therefore designed in Cartesian space, with the

associated advantages discussed in Section 2.3.2. This method has since been extended to

constrained motion control [2.33], yielding a controller that can achieve simultaneous

control of positions and forces. However, the transformation from joint space to Cartesian

space exacerbates the already complicated dynamic equations, and problems can arise at

singularities in the workspace due to ill-conditioning. The use of a pseudo-inverse for the

Jacobian and kinematics can alleviate these problems somewhat.

The main drawback with model based control is that it is computationally intensive

for all but the simplest of cases. Much research has been carried out to reduce this

computational burden, for example a simplified model of a PUMA robot has been derived

that uses 10% of the complete model calculations, yet is accurate to within 1% of the full

model [2.34].

The use of simplified models, as in the case of gravitational compensation,

alleviates this but then only provides marginal improvements over conventional fixed gain
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controllers. The inverse static actuator characteristics can be used within a feedback

controller to linearise any nonlinearities associated with the actuator. Other schemes

compute the manipulator model terms off-line, which are then used in a large look-up table

[2.35]. However, these are best suited to robots performing repetitive tasks where a priori

knowledge of the trajectory is available. Another approach to ease computational expense

is to express the model in configuration space where the model parameters are functions

of the manipulator position only [2.33]. The computational burden of all model based

schemes can be reduced by using a background process, operating at a reduced sample rate

from the main control loop, to calculate the model terms. However, any form of

discretisation of the calculated model will also lead to inaccuracies.

2.4.2 Optimal Control Methods

The aim of optimal control is the minimisation of a suitable performance criterion

of the system under control. For a robot the most useful performance criterion is the

minimisation of position or force errors, though the time to complete a task [2.36] or the

demand on the actuators can also be used.

Optimal control utilises a linear model of the manipulator dynamics. A suitable

performance index is then minimised, subject to the constraints imposed by the model and

bounds on the control input. The linear approximations used result in a linear quadratic

optimal controller. Since the nonlinear dynamic model is not used, the response is sub-

optimal away from the operating point.

As mentioned in the previous section, an optimal controller can be used for the

secondary controller of a model based scheme. There is also a class of optimal controllers

that utilise a low order linear model of the robot which is determined on-line, rather than

a fixed predetermined model. These controllers will be discussed in the context of adaptive

control methods in Section 2.4.4.
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However, optimal controllers are usually too complex to be used with manipulators

with more than four degrees of freedom [2.25]. Further, a priori knowledge of the desired

trajectory is often required, and this is not available in this particular application.

2.4.3 Robust Control Strategies

Robust control techniques were initially devised to address the problem of poorly

known system dynamics, and they are therefore insensitive to modelling errors and

variations in the system under control. Robust controllers have been used in the secondary

controller part of model based schemes, to cope with the presence of uncertainties in the

model based primary controller.

One nonlinear robust control technique [2.37], which utilises the Second Method

of Lyapunov, guarantees the stability of the closed loop system providing the errors in the

model are bound within a known range. The resulting control law is a discontinuous

switching function and, due to the discrete implementation, the control signal rapidly

alternates between different values. This phenomenon is known as chattering and is

problematic since excessive activity of the control signal can cause heating and rapid wear

within the actuators. Another problem is that the high frequency content of the signal can

excite unmodelled dynamics of the manipulator, such as flexibility.

Another robust method, termed variable structure control (VSC) or sliding mode

control, is similar to the Lyapunov method in that it uses a discontinuous switching

function [2.38, 2.39]. This drives the system rapidly onto a switching line or sliding surface,

defined in the state-space of the system, as shown in Figure 2.5a. After this initial reaching

phase, the system response is then governed entirely by the equation of the line, called the

sliding mode, see Figure 2.5b. The system then remains on the sliding surface and is

insensitive to disturbances and system variations, hence providing robustness.

The theory behind VSC is based entirely on continuous time systems, and a discrete
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Figure 2.5 Variable Structure Control (From Reay [2.38])

time implementation is an approximation of this. To ensure the stability of a discrete VSC,

high sample rates are required to prevent the system moving away from the sliding surface

during sample intervals. The requirement of high sample rates counteracts one of the main

advantages of VSC, namely their low computational requirements.

The problem of chattering is present to an even greater degree with VSC and several

approaches have been proposed to reduce this. One technique is to split the control signal

into continuous and discrete components [2.38], another involves using a finite width

boundary layer either side of the sliding surface [2.39]. A recently proposed VSC reduced

chattering by increasing the switching frequency beyond the bandwidth of the system, using

dedicated hardware circuits [2.40]. Another utilised fuzzy tuning rules to achieve the same

objective [2.41].

Another difficulty with VSC is that the derivative of the error signal is required to

realise a first order sliding surface, and this can be problematic if signals are noisy. Further

problems may arise with VSC if the initial state of the system under control is far from the

sliding surface, since during the reaching phase the system dynamics are undefined and it
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may never reach the surface. Despite these problems, application of VSC to robots now

forms an extensive body of work, ranging from SISO control [2.39], to multivariable robot

control [2.38] and hybrid position/force control [2.40, 2.42].

The methods just discussed are classed as nonlinear robust control since the

resulting control law is a nonlinear function. Linear robust controllers, based on the H  and2

H  design methodologies, have also been applied to manipulator control [2.43, 2.44]. These
�

methods result in a highly robust system, but this is often at the expense of conservative

performance. These controllers need careful selection of their cost weightings and again,

signal derivatives are usually required. Another form of linear robust control, termed

Quantitative Feedback Theory, has found application to the force control of hydraulic

actuators [2.45]. This method has the benefit that the order of the resulting controller can

be restricted, thereby yielding a more practical controller. Robust controllers that

incorporate an adaptation mechanism have also been proposed [2.37, 2.46]. A good survey

of robust robot control techniques and applications is given in [2.47], which covers all of

the major categories of robust control mentioned above.

2.4.4 Adaptive Controllers

The controllers discussed previously have constant parameters, and are designed to

be stable even when there are variations in the system under control. An alternative

approach, termed adaptive control [2.48, 2.49], automatically adjusts the controller gains

as the system changes, as shown in Figure 2.6. The controller therefore acts to maintain the

closed loop system response in the presence of variations in the system.

The simplest form of adaptive controller is called a gain scheduling controller,

where the gains are adjusted on the basis of a suitable system parameter. A gain scheduling

force controller is presented in [2.50], where the gain is a function of the load applied to a

hydraulic leg, embodying the changes that are occurring in the underlying system. However,
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Figure 2.6 Generalised Adaptive Controller

such schemes can only adapt to variations in the system which are known a priori and

manifest themselves in a measured system variable.

Model based adaptive schemes have been proposed [2.51] where those coefficients

of the robot model that are not well known or are changing, are updated automatically. This

is achieved using a system identification algorithm, which uses past input and output values

of the system to estimate the parameters, for example payload mass. The nonlinear

equations of motion of the robot are expressed as a linear function of joint outputs and

model parameters. These parameters are estimated using a Lyapunov function candidate

approach, and they converge to their true values providing certain constraints are met. This

method requires measurement of the joint angles, velocities and accelerations which can

be problematic due to noise.

Variants of this scheme have been proposed that alleviate the need for acceleration

measurements, one notable method being that of Slotine and Li [2.52] which also does not

require the inversion of the inertia matrix of the robot model. This particular area of

research has seen much work and is still active, addressing issues of convergence, stability

and computational burden. Another proposed scheme [2.53] used a combination of direct

and indirect adaptive controllers, to improve the disturbance rejection of force control.

However, these model based adaptive controllers are generally only practical if the number
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of estimated parameters is restricted. The problem becomes complex if the full manipulator

model is to be estimated.

Therefore, simpler adaptive schemes have been investigated, which are applied on

an independent joint basis, or that use a low order linear approximation of the robot model.

One such scheme is the model reference adaptive controller (MRAC), as proposed by

Dubowsky [2.54]. Here, a reference model is specified and an adaptation algorithm adjusts

the controller gains so that the output of the actual system follows that of the reference

model. The advantage of these controllers is that they require only a moderate number of

computations, and do not contain any of the complex mathematical dynamic models used

in previous methods. Analysis of the stability of such systems is difficult, though many

successful laboratory implementations have been reported [2.55].

Another class of adaptive control, referred to as self-tuning control, utilises a low

order linear approximation of the robot model, whose parameters are estimated on-line

from past input and output values using a system identification algorithm. The model

structure used can be either SISO or MIMO, and have joint space or Cartesian space

outputs, as appropriate. The use of a linear autoregressive model allows the use of efficient

recursive identification algorithms, such as recursive least squares (RLS) [2.56]. The

controller parameters are then designed based on this linear model, so that the closed loop

system meets some prescribed performance criterion. Any variations in the dynamics of the

system will be tracked by the identification algorithm, and hence automatically

accommodated by the controller.

There are several ways of designing a self-tuning controller [2.57], namely linear

quadratic Gaussian control, pole placement control and using multi-stage predictive control.

A linear quadratic Gaussian (LQG) controller essentially optimises the output of the

linearised model [2.58], and is designed along the same lines as the optimal controllers

described in Section 2.4.2. A variant of this, called the minimum variance controller, has



- 34 -

been widely applied to robot control [2.59, 2.60], and differs from LQG in that the

optimisation has no penalty on the demand to the actuators. These minimum variance

controllers suffer problems when the system to be controlled is nonminimum phase, that

is when fractional time delays are present, as is usually the case in digital implementations.

The use of pole placement (PP) controllers alleviates this restriction, and can also

be used when the delays are present, which again can be problematic for minimum variance

controllers. Pole placement schemes work by automatically adjusting the gains so that the

poles of the closed loop system are placed at some specified location [2.61, 2.62].

Consequently, the system response remains constant irrespective of changes in the

underlying system. This type of self-tuning controller has found fewer applications to robot

control compared with minimum variance controllers, the main reason for this being the

significantly higher computational expense [2.63]. However, pole placement is more

intuitive for the designer as it resembles a classical control design method, rather than using

weighting variables which require careful selection [2.26] and do not have a clear physical

meaning. Pole placement controllers also yields smoother control signals.

Multi-stage predictive controllers also use an optimisation criterion, but avoid the

problems associated with minimum variance control by using predicted future values in the

minimised cost function. One particular type of predictive controller is the generalised pole

placement (GPP) controller, which incorporates a pole placement procedure to determine

its weighting factors automatically [2.64]. These predictive control schemes can be

computationally intensive depending upon how many future predicted values are required,

as these are used in a matrix inversion. Also, a priori knowledge of the desired trajectory

is required to achieve optimal control. However, if this is not known and assumed to be

equal to the current set-point, the resulting control is sub-optimal. Nevertheless, predictive

control has seen successfully application to both position [2.65] and force control [2.66] of

hydraulic actuators.
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Adaptive controllers have been applied to most manipulator control problems,

including hybrid position/force control [2.67, 2.18, 2.19]. These schemes overcome the

inadequacies of fixed gain controllers which cannot take into account of changing operating

conditions and unknown dynamics. However, the controllers reported have only been

verified in theory or simulation, or applied to specialised electrically actuated robots. Little

work has been published regarding adaptive force control of industrial hydraulic

manipulators [2.50, 2.68].

2.4.5 Other Control Schemes

The field of robot control contains many diverse solutions, with the established

approaches being described in the sections above. Indeed, much reported work blurs these

boundaries by combining different control methods within the proposed controller. More

novel approaches are now being explored, using the concepts of neural networks, learning

control and fuzzy logic.

Neural networks, based on a "bottom up" approach to artificial intelligence, have

shown the ability to deliver simple yet powerful solutions to problems that have proved

difficult for conventional computing. Neural networks have been applied to robot control,

where the network learns the characteristics of the robot by adjusting its own weightings

[2.69]. The neural network forms a nonlinear model of the manipulator [2.70] which can

then be used within any of the aforementioned model based schemes, such as computed

torque control and adaptive control [2.71]. A neural network needs to be trained prior to

use, using a predefined set of learning data. This can be time consuming and essentially

prevents it being used for unstructured tasks. This is an active area of research, and recently

a neural network based force controller has been proposed [2.72].

Learning controllers work on a similar principle, in that the system learns the

behaviour of the robot, it is the implementation that differentiates it from a neural
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controller. In a neural network the information about the system is distributed across many

synaptic weightings, whereas in a learning controller it is stored as independent quantities.

Again this area has seen much recent work, particularly for implicit force control [2.73],

including application to robotic de-burring [2.74]. However, the need to train these systems

limits their applicability to repetitive tasks, also practical issues have yet to be addressed

and few experimental results have been presented.

Controllers based on fuzzy logic use heuristic and qualitative rules [2.75], rather

than the algebraic and differential equations of traditional controllers. These have been

combined with adaptive [2.76] and neural schemes to enable these rules to adapt to changes

in the system. Many forms of fuzzy robot controller have already been proposed, including

compliance control for insertion tasks [2.77]. However, these studies are predominantly

restricted to simulation studies.

2.5 Self-tuning Pole Placement Robot Controllers

The various control laws described above continue to be the subject of a vast

number of research papers. Many subtle variations of the general schemes have been

developed to address potential disadvantages with a particular type of control, though these

generally sacrifice some of the associated benefits. When selecting which control method

to use it is impossible to look at every form of controller published. Hence, the choice is

often made on the basis of the most appropriate general controller for a specific application.

This section describes the choice of a suitable control law for use with subsea

manipulators, the key features of which were introduced in Chapter One. The controller

selected is a self-tuning pole placement controller and the specific controller developed in

this thesis is then placed in the context of previously proposed self-tuning controllers,

which are described in some detail.
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2.5.1 Selection of Self-tuning Pole Placement for Robot Control

The problems encountered when controlling a typical subsea robot have been

highlighted in Section 2.2. The most important ones are the requirement of reactivity, and

the large variations in dynamics that arise due to the fact that it is a direct drive hydraulic

manipulator. Constraints imposed by the physical manipulator also restrict the choice of

controller that can be applied.

A model of the Slingsby TA9 manipulator used in this study can be derived from

general assembly drawings, physical measurements and appropriate assumptions, and this

is the subject of Chapter Three. However, this model is used solely for the purpose of

simulation, as no model based parameters are used within the proposed controller. The

reason a model based scheme was not used was because the hydraulic actuator dynamics

further complicate the already computationally intensive manipulator model. Furthermore,

typical subsea tasks are subject to unpredictable variations in payload and end-effector

forces, and since this has a large influence on the robot dynamics, any model based scheme

would quickly degrade.

The optimal and robust control methods were deemed unsuitable for this particular

application for two reasons. The first reason is the requirement of signal derivatives. The

Slingsby TA9 has analogue joint angle sensors which are noisy, thus any attempt to

approximate the joint velocity from successive joint positions yields an unusable signal.

Secondly, the rapid switching of the control signal would be problematic for a hydraulically

actuated robot. Although the switching frequency can be made to be above the bandwidth

of the hydraulic actuators, it is comparable to that of the servovalves that regulate the flow

of hydraulic fluid. Servovalves are precision devices and would be susceptible to wear and

even seizure when switched at such high frequencies.

Controllers using neural networks, fuzzy logic or learning tend to be based around

traditional schemes, with the extensions providing the ability to automatically train the
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controller. However, this would be of little benefit in this application, since subsea tasks

are generally not repetitive.

An adaptive control scheme was deemed most suitable for this application, as it can

automatically accommodate the wide variations in manipulator dynamics. Model based

adaptive schemes were precluded for the reasons given above. Self-tuning controllers and

model reference adaptive controllers are technically closely related [2.57], and it is the

underlying philosophy that distinguishes them. Consequently, a self-tuning controller was

chosen in preference to a MRAC scheme, simply because it is more intuitive.

Of the different forms of self-tuning controller described in Section 2.4.4, a pole

placement scheme was selected. While it is certainly true that pole placement controllers

are more computationally intensive than other approaches [2.40], there is scope for

simplification to realise practical implementations. Furthermore, microprocessors are now

providing vast computing power, and computationally efficient pole placement algorithms

have been developed.

One of the main reasons for selecting a pole placement controller is that it can

control a nonminimum phase system, which is typical when using digital control [2.78].

Other reasons include the smoother control, and the lack of weighting values that make

other self-tuning approaches more difficult to design.

2.5.2 The Proposed Self-tuning Pole Placement Robot Controllers

The low order model at the heart of a self-tuning controller, enables the application

of a self-tuner within any of the manipulator control schemes outlined in Section 2.3, be it

independent SISO joint control or explicit MIMO force control. The low order model is

simply constructed using the appropriate input and output signals, and the controller is then

designed accordingly. The experimental manipulator cannot provide good velocity

measurements due to noisy sensors, so the proposed controllers only operate on position
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and force signals.

This thesis demonstrates the feasibility of applying self-tuning pole placement

control to a Slingsby TA9 subsea hydraulic robot by first employing it in an independent

SISO joint angle controller. This will show what benefits such a self-tuning scheme

provides over the standard fixed gain controllers used on the manipulator.

This is then extended to the MIMO hybrid position/force control problem, where

simultaneous control of forces and positions in Cartesian space is required. This will

explore the benefits of using the more complex Cartesian space controllers, which should

provide improvements over the SISO joint space controllers, as discussed in Section 2.3.2.

The hybrid position/force control problem also allows investigation of the suitability of

self-tuning controllers for force control.

An explicit force controller is used in preference to an implicit controller, since the

model of the robot/environment interaction is not well known and will change from task

to task. This relationship is required in an implicit controller. Also inner velocity loops,

often required to improve the stability of implicit schemes, are not viable for this robot.

Further, the large unmodelled disturbances present in typical underwater tasks could be

problematic for implicit schemes.

 A detailed discussion of the specific self-tuning controllers used in this thesis will

be presented in Chapter Four. Stability and robustness analysis of these particular

controllers is beyond the scope of this work. However, the performance of the proposed

self-tuning controllers will be compared to conventional fixed gain controllers, for many

different operating conditions of the experimental manipulator. The benefits of the

proposed schemes will be presented from a practical perspective.

2.5.3 Previously Proposed Self-tuning Robot Controllers

There have been many different types of self-tuning control applied to manipulators,
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for instance both SISO and MIMO controllers have found use, as have LQG, minimum

variance and pole placement schemes. Also, the particular manipulator to which they have

been applied has varied widely. Some are experimental while most are simulated, and the

majority use ideal or electrical drives, with only a few being hydraulically actuated. A

summary of the various SISO self-tuning robot controllers reported is given in Table 2.1,

the actual controller designs used are discussed in more detail in Chapter Four.

The first reported application of a self-tuning robot controller was by Koivo [2.59],

in which an LQG controller was applied to a simulated electrical robot. Lelic [2.64]

reported the first application of a self-tuning controller to an experimental laboratory robot,

this manipulator was powered by harmonic drives and had an inner velocity feedback loop.

A GPP controller was used which performed better when a priori knowledge of the

reference trajectory was available. Pole placement schemes were first proposed by Karam

[2.79] and Broome [2.80], but both were implemented in simulation only.

The first application of a pole placement scheme to a hydraulic mechanism was

reported by Finney [2.78], who used an experimental linear hydraulic ram similar to those

that are used to actuate robot joints. Plummer [2.81] extended this work by including a

forgetting factor and a novel covariance management algorithm to increase the reliability

of the practical system identifier. The use of variable forgetting factors and numerically

robust system identification algorithms were investigated by Ozsoy [2.82], however since

the system identification was carried out off-line, it cannot strictly be regarded as a self-

tuning control scheme.

The work of Sepheri [2.60] used a simulated hydraulic manipulator, and

investigated the effect of augmenting a minimum variance controller with feedforward

model based compensation of the actuator dynamics. Ananthakrishnan [2.68] reported the

application of pole placement control to an experimental industrial hydraulic manipulator.

It is referred to as a MIMO scheme, though it clearly uses independent SISO joint
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Controller
Type

Exp. or
Sim.

Controlled
Variable

n DOF Robot Type Notes:

Koivo [2.59] LQG Sim. joint velocity 6 Lab. Electrical Stanford/JPL arm.

Lelic [2.64] GPP Exp. joint angle 1 Lab. Electrical Uses internal velocity feedback loop.

Karam [2.79] PP Sim. joint angle 6 Ind. Electrical Kuka IR161/15.

Broome [2.80] PP Sim. joint angle 2 Small Ideal Puma 560 with ideal torque sources for
joints 2 and 3.

Finney [2.78] PP Exp. linear position 1 Hydraulic Ram Single linear hydraulic actuator.

Plummer [2.81] PP Exp. linear position 1 Hydraulic Ram Single linear hydraulic actuator.

Sepheri [2.60] MV Sim. joint velocity 2 Small Hydraulic Rotary hydraulic actuators.

Ananthakrishnan [2.68] PP Exp joint angle 4 Ind. Hydraulic Positech CC1A. Rotary/linear actuators

Eun [2.84] PP Sim force/position 3 Small Ideal Hybrid Position/Force Controller

Koivo [2.26] PP, LQG Sim. joint angle 3 Small Ideal Ideal torque source actuators.

Wang [2.85, 2.86] PP Exp contact force 3 Ind. Electrical Puma 560 with passive compliance.

Clegg [1.13, 2.87] PP Exp. joint angle 1 Subsea Hydraulic TA9. Rotary and linear hydraulic
actuators.

Table 2.1 Different SISO Self-tuning Controllers used for Robot Control

Notes:

1) The controller types are linear quadratic Gaussian (LQG); minimum variance (MV); generalised pole placement (GPP); pole placement (PP).

2) n is the number of joints to which the independent controllers were applied.
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controllers. This work was extended in [2.83] which demonstrated the superiority of a pole

placement controller over a MRAC scheme, as well as its ability to cope with significant

joint friction. Another application of SISO pole placement controllers to a MIMO robot

control problem was reported by Eun [2.84]. The independent SISO controllers were

applied to the hybrid position/force control problem of a simulated 3 DOF ideal

manipulator and demonstrated good performance.

Koivo [2.26] presented a series of examples comparing both LQG and pole

placement controllers, and also looked at the use of feedforward compensation of Coriolis

and gravitational terms. Wang [2.85] reported the use of SISO self-tuning pole placement

controllers for the outer loop of an implicit impedance force controller for a PUMA robot.

However, the results presented, and those in a follow up paper [2.86], are inconclusive

probably due to the low sample rates of the VAL-2 controller dedicated to the PUMA.

The initial work presented in this thesis [1.13, 2.87] complements the work that has

gone before. Only Ananthakrishnan has applied pole placement control to an experimental

hydraulic robot, and one which is more sophisticated than the Slingsby TA9 used here.

Also, the work here investigates the performance benefits offered by these controllers over

conventional fixed gain PID schemes for a wide range of conditions.

The SISO scheme initially developed here formed the basis for the extension of the

self-tuning pole placement controller to the MIMO hybrid position/force control problem.

Fewer MIMO self-tuning schemes have been proposed in the literature, and a summary of

these are given in Table 2.2.

A MIMO decoupling pole placement controller was applied by Plummer [2.88] to

an experimental 2 DOF electrohydraulic actuator system. However, the multivariable

system identification used was applied off-line, and again it cannot be regarded as a self-

tuning scheme. Nevertheless, it did demonstrate the benefits of multivariable control for

such a system.
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Controller
Type

Exp. or
Sim.

Controlled
Variables

n DOF Robot Type Notes:

Koivo [2.59] LQG Sim. joint velocities 6 Lab. Electrical Stanford/JPL arm.

Koivo [2.63] LQG Sim. Cart. velocities
and positions

3 Lab. Electrical Stanford/JPL arm.

Koivo [2.89, 2.26] LQG Sim. Cart. velocity
and force

2 Small Ideal Stanford/JPL arm with ideal torque
sources for joints 1 and 3.

Ozsoy [2.90] MV Sim. Cart. velocity
and force
derivative

2 Small Ideal

Clegg [2.40 and
Chapter Seven]

PP Sim. Cart. position
and force

2 Subsea Hydraulic TA9 joints 1 and 3. Linear hydraulic
actuators.

Table 2.2 Different MIMO Self-tuning Controllers used for Robot Control

Notes:

1) The controller types are linear, quadratic Gaussian (LQG); minimum variance (MV); pole placement (PP).

2) n is the number of DOF to which the MIMO controller was applied.
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Much of the MIMO self-tuning work has been carried out by Koivo, who was first

to apply such a controller to a manipulator [2.59]. This initial work still operated in joint

space, controlling the joint angle velocities, but used the multivariable structure to regulate

the coupling between joints. This work was extended to a MIMO Cartesian controller

[2.63], where Cartesian velocities were controlled. A more complex scheme was introduced

in the same paper which controlled both Cartesian velocities and positions. A force-

position-velocity scheme was then developed [2.89] and extended [2.26]. These schemes

proposed by Koivo essentially model the system with Cartesian velocity outputs, and only

use force errors within the minimised cost function in the LQG.

Another self-tuning MIMO controller was reported by Ozsoy [2.90]. This scheme

used the Cartesian velocity and force derivative as the estimated model outputs and hence

the controlled variables, for the simulated 2 DOF ideal manipulator. This model was

coupled to a minimum variance controller, to give a self-tuning hybrid velocity/force

system. However, the results presented were brief and did not clearly demonstrate the

effectiveness of the developed system.

The self-tuning hybrid position/force controller developed in this thesis uses a

MIMO pole placement scheme [2.40], which has not been previously applied. This

controller goes further than Koivo's constrained motion controller, in that it explicitly uses

the force measurements in the estimated process model. Furthermore, the simulation model

to which the control scheme is applied includes realistic hydraulic actuator dynamics,

whereas Koivo's work assumed ideal torque sources. This thesis also describes the

implementation of the MIMO self-tuning hybrid position/force controller on the

experimental Slingsby TA9 manipulator.

2.6 Summary

This chapter described the main approaches to the problem of manipulator control.
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It first considered the distinction between joint space and Cartesian space control schemes

and then discussed methods of controlling constrained motions, namely implicit and

explicit force control. The concept of hybrid position/force control was introduced.

The many different control techniques that have found application to manipulator

control were then presented. The merits and drawbacks of each particular method were

discussed, and instances of successful applications of each technique were highlighted.

A self-tuning pole placement controller was selected for use in this application, and

the reasons for this choice were discussed. The controllers developed here were then placed

in the context of previously proposed self-tuning manipulator controllers, showing how

they complement previously reported work and their own novel features.
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Chapter 3

Manipulator, Actuator and Contact
Modelling

3.1 Introduction

In this chapter mathematical models of the manipulator and actuators are developed,

this includes modelling of any contacts made between the robot and objects or surfaces that

may be within the workspace of the robot. The need for modelling stems from the

requirement to understand how a particular system behaves, and the derivation of these

mathematical representations provides the necessary insight. The models can then be used

to develop realistic simulations, allowing complex control strategies to be tried in the

comparative simplicity and safety of simulation. The models can also be used within model

based controllers, where full or partial knowledge of the model is incorporated in the

control design. The modelling process also forces strict definitions upon the system, this

being particularly relevant to the assignment of coordinate systems along the length of the

manipulator.

Firstly, the manipulator used in the experimental work throughout this thesis is

introduced, with a description of its salient features. Then the kinematic model of the

manipulator is detailed, this being developed for a reduced number of degrees of freedom

(DOF). The kinematic model embraces the motion of the manipulator without any regard

for the forces which cause the movement, and hence comprises solely of the geometrical

representation of the robot. The forward kinematics gives the Cartesian position and

orientation of the manipulator end-effector from the joint angles and link lengths,
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transforming from joint space to Cartesian space. The reverse transformation is referred

to as the inverse kinematics. One further important kinematic transformation is the

Jacobian which relates Cartesian velocities to joint space velocities and also forces in

Cartesian space to those in joint space.

The dynamic equations of the manipulator are then presented, these being an

extension of the kinematics to include the forces that cause the motion of the robot links.

This embodies the rigid body dynamics of the robot links, the dynamics of the hydraulic

actuators and contact dynamics. The complete robot dynamic model is presented in a closed

form with the hydraulic actuator model being derived such that it is applicable to a

manipulator with an arbitrary number of joints.

For the purpose of simulation, the complete model is implemented for use in the

MATLAB/SIMULINK package which enables controllers of varying complexity to be

readily constructed and tested. Validation of this model against experimental data is

presented in the later chapters of this thesis.

3.2 Experimental Manipulator

The manipulator used in this study is a right-handed Slingsby (SEL) TA9 hydraulic

underwater manipulator that is located in the Ocean Systems Laboratory at Heriot-Watt

University. This manipulator, shown in Figure 3.1, is in widespread use in the offshore

industry of the North Sea, and is primitive when compared to the specialised laboratory

robots to which advanced control strategies are usually applied. The manipulator is one of

a pair mounted inside a water-tight tank in which they can operate submerged.

This six degree of freedom (DOF) robot is 1.53 m in length, has a mass of 36 kg and

a rated maximum payload of 80 kg. An external hydraulic pump provides hydraulic fluid

at a nominal pressure of 175×10  N m  (2500 psi). There are six revolute joints, four of5 -2

which are actuated by linear rams acting about pivots and two by rotary hydraulic actuators.
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Figure 3.1 Slingsby TA9 Underwater Manipulator

The claw open/close is also operated by a linear ram. The flow of hydraulic fluid to these

actuators is regulated by MOOG E777-006 electrohydraulic servovalves, which are

described in subsequent sections. Joint angle sensing is achieved using linear

potentiometers, the wiper voltage being proportional to the joint angle. Simple calibration

of the robot determines the relationship between the wiper voltage and joint angle.

The manipulator used in this study has been equipped with a six axis force/torque

sensor (Assurance Technologies Inc Model 150/600), which has been marinised for use in

the laboratory test tank. This sensor is mounted between the claw rotate joint and the wrist

joint, 257 mm from the tip of the end-effector. The raw strain gauge signals from the sensor

are converted into force/torque data by the ATI transducer controller, located remotely

from the manipulator. This factory calibrated unit outputs the data as analogue voltages.

3.3 Kinematic Manipulator Model

For the purposes of this study it was decided to limit the manipulator used in the

experiments and simulations to two DOF, namely the shoulder slew and elbow joints. This

enabled the experimentation to proceed without being impeded by the complications of a
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Figure 3.2  Plan View of Restricted TA9 Configuration

full six DOF system, requiring determination of the complete kinematics and dynamics.

The use of the shoulder and elbow joints still provided a large workspace for the Cartesian

position and force control investigation. The control schemes and conclusions developed

here for the restricted manipulator can be extended to the full TA9, and this has been borne

in mind throughout the work.

The restricted manipulator is confined to operation in the horizontal plane,

providing the unused joints are frozen . A plan view of the manipulator is given in Figure†

3.2. The wrist joint introduces a third, albeit fixed, joint angle into the kinematic analysis

since it cannot be set to 0°, due to mechanical limits of the TA9.

To describe the location of the links of the manipulator, coordinate frames {i} are

attached to each successive link i, these frames being assigned using the modified Denavit-

Hartenberg notation [3.1, 2.1]. Essentially, frame {i} has its origin coincident with the

particular joint, with the Ẑ  axis aligned with the axis of the joint (out of the paper in thei
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(3.1)

case of Figure 3.2). The X̂  axis is in the direction of the next joint and Ŷ  is formed by thei i

right-hand rule to complete the frame {i}. The constraint frame, {C}, is the coordinate

system in which Cartesian positions and forces are specified, here it is coincident with the

frame {0}.

The link lengths and widths of the manipulator were measured and found to be

l  = 0.452 m, l  = 0.522 m, l  = 0.558 m, w  = 0.17 m, w  = 0.14 m and w  = 0.12 m. The1 2 3 1 2 3

limits of the joint angles, as defined on Figure 3.2, were measured and found to be :-

shoulder slew, �  = 66.95° to 182.45°1

elbow pivot, �  = 0.57° to 102.32°2

wrist pivot, �  = 14.48° (fixed)3

These link lengths and joint angles were measured on the experimental arm and

confirmed using the assembly drawings of the robot. It should be noted that these joint

angle ranges differ from the nominal ranges provided by the manufacturer, as given in

Figure 3.1. The values were validated by commanding the robot to move in a square under

Cartesian control and observing the relative position of the corners, which matched closely

with the distances commanded.

The forward kinematics of a manipulator are derived using the homogeneous

transformations relating successive frames along the length of the robot. This procedure is

detailed in [2.1] and yields the following expression for this particular arrangement :-

where c  = cos(� ), s  = sin(� ), c  = cos(� +� ) etc. The forward kinematics of Equation1 1 1 1 12 1 2

3.1 specifies the unique mapping from joint space, � = [�  � ] , to Cartesian space, giving1 2
T



- 51 -

(3.2)

(3.3)

(3.4)

the end-effector position specified in frame {C}, X = [ x y] . The inverse kinematics,C C C T

providing the reverse mapping, is often problematic to solve as no, multiple or even infinite

solutions may exist [1.8]. This is not addressed in this thesis.

The Jacobian of a manipulator is similarly derived from the homogeneous frame

transformations, again detailed in [2.1], and for this particular manipulator is given by

Equation 3.2.

By definition, the Jacobian transforms the joint space angular velocities to the

Cartesian velocity of the manipulator end-effector, as shown by Equation 3.3. It is also used

to relate the torques at the joints, � = [�  � ] , to forces that are acting upon the tip of the1 2
T

robot specified in frame {C}, F = [ F  F ] , as defined by Equation 3.4.C C C T
x y

There are also kinematic properties associated with the actuator, but these are

inextricably linked to the actuator dynamics, which will be covered in the subsequent

sections.

3.4 Dynamic Manipulator Model

It is more usual for the dynamic model of a robot to consist only of the rigid body

dynamics of the links. Here, however, the dynamics of the hydraulic actuators used on the

TA9 are also considered and augment the standard rigid body dynamics, resulting in a

highly nonlinear system. The hydraulic system can be separated into two parts; an
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electrohydraulic servovalve which regulates the flow of hydraulic fluid, and an actuator that

generates movement at the joint. The dynamics of these hydraulic components are first

formulated and their static characteristics are examined, enabling some of the nonlinearities

to be visualised. This actuator model is then embodied in the traditional rigid body

manipulator model. The overall model is derived such that it is applicable to robots with

an arbitrary number of hydraulically actuated joints.

The values of the parameters used to model the restricted TA9 manipulator in the

following sections are given in Appendix A.2.

3.4.1 Modelling of Electrohydraulic Servovalves

Electrohydraulic servovalves are used to regulate the flow of hydraulic fluid,

enabling low power electrical signals (less than 1 W) to precisely control high power

hydraulic components (which may be rated up to 7000 W). In robotic systems they regulate

the fluid flow into either rotary or linear hydraulic actuators, which provide motion at the

joints of the manipulator.

There are many different types of servovalve [3.2], but only two-stage four-way

servovalves, which are specified on the TA9 manipulator, will be considered here. These

regulate the flow of hydraulic fluid using the displacement of a central spool, which

partially opens each port through which fluid can flow, as indicated in Figure 3.3. The type

of valve shown is termed a four-way servovalve since it has four hydraulic connections; one

for the supply pressure, P , another for the exhaust, P , and two regulated control ports, ones e

feeding the hydraulic system, P , and the other being the corresponding return, P .1 2

Motion of the spool is provided by means of a torque motor which converts an

electrical input into a small angular deflection. This deflection drives a nozzle-flapper valve

(not shown on Figure 3.3), which in turn actuates the central spool of the main four-way

valve. Thus these servovalves are termed two-stage and this results in both high precision
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Figure 3.3 Servovalve Schematic Diagram

(3.5)

and high gain. Generally, the torque motors are actuated by two coils and when driven by

a suitable current source, the time constant of the circuit is insignificant when compared to

the rest of the system.

The general dynamic analysis of this type of servovalve yields a sixth-order

expression [3.3]. However, the following first-order transfer function can be used with little

loss of accuracy for frequencies up to 200 Hz [3.4] :-

where x is the spool displacement (m) and i is the coil input current (mA). Further, for static

or low frequency analysis where the dynamics of the servovalve can be completely ignored,

and the gain of the servovalve spool is simply K .i

When the spool, of internal diameter d , is displaced by a distance x, two annular1

orifices are formed, each of diameter d  and width x, giving an orifice area of �d x. The1 1

assumption that the valve openings can be treated as orifices is valid since x is small

compared to d , which has the implication that the power available in the pressure drop1

across the orifice is converted entirely to kinetic energy of the fluid. Therefore, using



 ‡
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(3.6)

(3.7)

standard fluid dynamics analysis [3.2] the expression for volumetric flowrate through these

orifices, q  and q , can be found to be :-1 2

where � is the density of the hydraulic fluid assumed constant and sgn(x) is the signum

function . The constant C  accounts for the fact that the jet formed from the flow through‡
d

the orifice is smaller than the actual orifice, due to turbulent flow. Typically this has a value

in the range of 0.5 to 0.6, here it is taken to be 0.5 so as to match the rated flowrate of these

specific servovalves. The servovalve is assumed symmetrical, which allows the pressure

drop across each orifice to be equated, that is, P  - P  = P  - P . Also, the exhaust pressures 1 2 e

is assumed negligible (i.e. P  = 0) and the load pressure is defined as P  = P  - P . Usinge m 1 2

this definition of P  and the assumptions of servovalve symmetry and negligible exhaustm

pressure, it can be shown that :-

Other factors that introduce further nonlinear variations in flowrate are temperature,

degree of lap [3.2], internal leakage, mechanical resolution, hysteresis and drifting of the

input signal. These characteristics are not considered in the development of this model.

3.4.2 Linear Hydraulic Actuators

There are two broad categories of actuator used in hydraulic robots, linear actuators

and rotary actuators. Only linear actuators are investigated here, since similar analysis can
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Figure 3.4 Linear Hydraulic Actuator

(3.8)

(3.9)

be applied to rotational actuators in complete analogy with that presented here. A schematic

diagram of a linear hydraulic actuator is shown in Figure 3.4.

As fluid enters the left-hand side of the ram, the pressure across the piston increases,

which gives rise to a force, F , which in turn produces linear motion of the ram, . Thispiston

motion causes fluid to leave the right-hand chamber until equilibrium is reached. The

expression for the force, F , is simply :-piston

where A  is the piston area. Often, the cross-sectional area of the connecting rod inside the2

cylinder is significant, and then the piston area should be taken to be the average area on

both sides of the ram.

A small leakage flow across the piston, q , may exist and is shown as the separateleak

flow path in Figure 3.4. This is often deliberately introduced by designers to improve

overall system stability. This flow is taken to be proportional to the pressure drop across

the piston :-
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(3.10)

(3.11)

Since there is no external leakage, the flowrates entering and leaving the ram are

equal, and can be equated to the volume displaced by the piston motion and leakage across

it, thus :-

These flows are regulated by a servovalve, as described in the preceding section,

therefore the electrical input signal to the servovalve governs the motion of the piston.

Often, long hoses connect the actuator to the servovalve and as the hydraulic fluid flows

between them, the flowrate is diminished due to compression of the fluid. This reduction

is proportional to both the volume into which the fluid is flowing and the rate of change of

pressure which gives [3.2, 3.4] :-

where V  and V  are the volumes of fluid on the respective sides of the piston, including that1 2

in the connecting hoses. The bulk modulus, � , of a fluid is a measure of its compressibility,0

and for a typical hydraulic fluid is taken to be 17×10  N m . The effective bulk modulus,8 -2

�, used in Equation 3.11, includes additional effects such as hose wall flexibility, the

presence of air entrapped in the fluid and changes in fluid temperature, and is consequently

lower than � .0

Dilation of the walls of the enclosing vessel can reduce the bulk modulus by 20%

for thin walled aluminium cylinders, and can be up to 50% for flexible hoses, which are

often used in robotic applications. The presence of air has a more dramatic effect upon the

bulk modulus since gases are of the order of 100 times more compressible than fluids.

Typically, if the fluid contains 0.1% air by volume, then the bulk modulus is reduced by
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Temperature (�C) Bulk Modulus (�, ×10  N m  )8 -2

-50 22.0

0 19.0

50 15.5

100 12.5

150 9.5

Table 3.1 Variation of Bulk Modulus with Fluid Temperature

(3.12)

(3.13)

10%, with 1% air entrapped this increases to a 50% reduction. The reduction with fluid

temperature is shown in Table 3.1 [3.5] :-

Since all of these effects manifest themselves as changes in the effective bulk

modulus, it is easy to investigate how performance is degraded under such extreme

operating conditions.

Equations 3.7 and 3.9 to 3.11 can then be combined to give :-

where V  is the total volume of fluid in the piston and connecting hoses, and is used tot

represent the average values of V  and V . This expression illustrates that the flow leaving1 2

the servovalve forms three components; the flow which provides motion of the ram, the

leakage flow and the flow due to fluid compressibility. Equating this to Equation 3.6, the

expression for flowrate through the servovalve, and rearranging yields :-
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Figure 3.5 Linear Hydraulic Actuator acting about a Pivot

(3.14)

(3.15)

(3.16)

3.4.3 Linear Hydraulic Actuators Acting About a Pivot

Linear hydraulic actuators used in robotic applications can drive either prismatic

joints (linear motion) or revolute joints (rotation about a pivot) as used in the Slingsby TA9

manipulator. The subsequent analysis will concern linear rams actuating revolute joints, as

shown in Figure 3.5, since the prismatic joint case is a subset of that presented.

Taking the overall piston length as y, the following expressions can be derived by

applying the cosine and sine rules respectively to the geometry of the actuator shown in

Figure 3.5 :-

An expression for  can then be derived by differentiating Equation 3.14 with

respect to time, giving :-
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

This expression relates the piston velocity to the piston angle and angular velocity,

for use in Equation 3.13. The torque about the joint, � , is related to the force produced byp

the piston and the friction present in the ram, B , by :-piston

which, using Equations 3.8, 3.14 and 3.15, can be re-written as :-

where :-

The manipulator joint angle, �, as defined according to the modified Denavit-

Hartenberg conventions, see Figure 3.2, may not coincide with the angle made by the piston

and pivots, � . Also, due to the physical arrangement of the actuator, the joint angle mayp

be in the opposite sense to � , therefore Equation 3.20 is used to transform from one anglep

to the other :-

where k  is defined to be either +1 or -1 depending upon the relative sense of the angles,
�dir

and �  is determined from the physical configuration of the actuator and link to align thepoffset

two angles. Since the joint torque is defined in the same direction as the joint angle, the

following relation also applies :-

and therefore :-
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(3.22)

(3.23)

(3.24)

The friction present in the ram, B , is modelled here having both viscous andpiston

Coulomb friction components. The viscous friction is proportional to the velocity of the

ram, and Coulomb friction is constant except for a sign dependency on the ram velocity

[3.6]. Therefore :-

Friction is also present in the joint itself and is again composed of both viscous and

Coulomb friction. Therefore :-

This joint friction is embodied in the closed form dynamic model of the complete

robot, as described later in Section 3.4.5. For certain actuators on the TA9, a positive input

signal produces motion in the joint in the opposite sense to that indicated on Figure 3.5, this

being the result of polarity changes in the servovalve solenoid, spool and/or connecting

hoses. The model can be generalised to accommodate this, by setting the sign of K  ini

Equation 3.5 appropriately.

3.4.4 Static Characteristics of Linear Hydraulic Actuators

To visualise the nonlinear expressions that model a hydraulic actuator, the static

characteristics shall now be investigated. During steady state conditions, a small flow

through the servovalve is maintained due to the leakage flow across the piston ram. Setting

the derivative and velocity dependent terms, including friction, in Equations 3.5, 3.13 and

3.18 to zero gives :-
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(3.25)

(3.26)

Figure 3.6 Static Characteristics for Hydraulic and Ideal Actuators

These relationships give the nonlinear dependency that the torque about the joint

has upon both the input current, i, and the piston angle, � , under static conditions. Onlyp

positive values of i will be considered here, as the results are symmetrical about i = 0 mA.

These expressions are plotted in Figure 3.6a, with the piston angle being transformed to the

joint angle using Equation 3.20 for the purpose of comparison. These particular

characteristics are of the shoulder slew actuator of the TA9 and clearly illustrate the

nonlinearities present in these types of actuator. The other actuators of the TA9 have similar

characteristics. Figure 3.6b shows the equivalent characteristics of the often assumed ideal

torque source, which produces a torque proportional to the input signal and is independent

of the configuration of the manipulator.
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(3.27)

In many robot force control strategies the Jacobian is used to transform force errors

in Cartesian space to joint torque errors, Equation 3.4. Since the control signal for the TA9

manipulator is servovalve current, the controllers used must be able to accommodate the

nonlinearities shown in Figure 3.6a. It must be stressed that these characteristics do not

include any dynamic effects which will introduce further nonlinearities. They do clearly

demonstrate the need for the nonlinear model, to enable realistic simulations to be

produced.

3.4.5 Hydraulically Actuated Robot Model

A generalised direct drive manipulator with an arbitrary number of joints is

conveniently represented by the following closed form dynamic model [2.1] :-

where � is the vector of joint torques, � is the vector of joint angles, M is the inertia matrix

of the manipulator links, V is the Coriolis and centrifugal effects matrix, G is the gravity

matrix, B is the vector of friction acting at each joint, J is the Jacobian of the manipulatorC

and F is the vector of forces and torques at the end-effector. The joint torques, �, and jointC

friction, B, for the hydraulically actuated manipulator are simply obtained by stacking

Equations 3.22 and 3.24 respectively for each joint of robot. This enures that the

hydraulically actuator model can be applied to manipulators with an arbitrary number of

joints.

The closed form model matrices for the restricted TA9 are given in Appendix A.4,

these being derived using the conventional recursive Newton-Euler dynamic equations.

Often these are formulated with the mass of the link being concentrated at a single point at

the distal end. However, here each link was assumed to be a homogeneous rectangular

mass, with its centre of mass being halfway along its principal axes.
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(3.28)

(3.29)

 Rearranging Equation 3.27 as :-

enables the motion of the manipulator to be simulated by simply integrating Equation 3.28

twice with respect to time. Similarly, the load pressure, P , of each actuator required tom

determine �, is obtained by integrating Equation 3.13 for each joint of the robot.

Hydrodynamic effects associated with manipulator motion in water, such as drag

and buoyancy, are complicated to determine and are only significant when the robot is

moving at high speed. It has been shown experimentally that operation in water or in air has

little consequence to typical motions [1.2]. These hydrodynamic effects are therefore left

unmodelled.

3.5 Environment Model

When the manipulator end-effector is in contact with a surface or object it is

modelled either as a soft contact or a hard contact, often termed compliant motion and

constrained motion respectively. A soft contact involves translational motion into the

surface, with the force being proportional to the displacement into the surface, �X. TheC

constant of proportionality is termed the environmental stiffness, K , and effectively modelsE

the contact as a spring, thus :-

Other soft contact models that can be used have the behaviour of dampers and/or

inertias, however the spring model is the most prevalent in robotics research due to its

simplicity [2.3]. Hard contacts, on the other hand, involve strict mathematical constraints

which must be satisfied, with the end-effector and environmental surface maintaining their

shapes regardless of the magnitude of force exerted. Whilst contact is maintained, this
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% hydraulic actuator dynamics
jp = la.*lb.*sin(theta-theta_poffset)./ sqrt(la.*la+lb.*lb-2*la.*lb.*cos(theta-theta_poffset));
y_dot = jp.*theta_dot;
pm_dot = 4*beta*( kv.*x.*sqrt(ps-sign(x).*pm) - A2.*y_dot - kleak.*pm )./Vt;
x_dot = (ki.*servovalve_current - x)./taui;
piston_fric = Fram(:,1).*y_dot + Fram(:,2).*sign(y_dot);
tau = (A2.*pm - piston_fric).*jp;

MATLAB code for hydraulic actuator model

constraint imposes limits on certain joint variables of the manipulator. To model this

behaviour it is required to reform the robot model with a reduced number of independent

joint variables. This is problematic and beyond the scope of this thesis.

Sliding motions across the constraint surface are assumed frictionless, this situation

is approached experimentally with the use of a ball transfer unit tool to minimise the sliding

friction.

The transition from free space motion to constrained motion involves the study of

rigid body impacts. This is beyond the scope of this work and consequently the simulations

are initialised with the robot in contact with the environment. In the case of practical

experiments any such transients are allowed to decay and so do not effect the results.

3.6 Hydraulic Manipulator Model Realisation

The actuator model, consisting of Equations 3.5, 3.13, 3.16, 3.19, 3.22 and 3.23, can

be conveniently written in a few lines of MATLAB  code, as shown below. This code can††

be directly applied to manipulators with an arbitrary number of joints, due to MATLAB's

handling of vector calculations. The model may also be constructed using the graphical user

interface that SIMULINK provides, as shown in Figure 3.7.

Either form of the hydraulic actuator model can be easily incorporated into the

overall manipulator dynamic model for subsequent simulation. The simulation results
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Figure 3.7 SIMULINK Graphical Model of a Hydraulic Actuator

presented in the following chapters were generated using the coded version embodied in

an S-Function. This form was used since it produces a more compact, versatile and rigorous

model than the graphical version, since a copy of Figure 3.7 is needed for each joint of the

robot in the graphical model.

The values of the various parameters used to model the restricted TA9 manipulator

are given in Appendix A.2. Furthermore, the complete set of MATLAB files that constitute

the SIMULINK model, as used in the simulation work presented later, are given in

Appendix A.5.

3.6.1 Model Initial Conditions

For the model to start in a state of equilibrium the initial conditions of the states,

integrators and inputs need to be set correctly. The initial joint velocities, , and

accelerations, , are set to zero so that the manipulator is not moving, and the joint

angles are initialised with the desired starting joint angle, . The friction terms are zero

since there is no motion. Therefore, from Equation 3.28, the joint torques must equal the

gravitational term and the effect of any initial end-effector forces,  :-



- 66 -

(3.30)

(3.31)

(3.32)

Similarly, the load pressure at each actuator to provide this torque is derived from

Equation 3.22, as :-

The value of P , required to maintain an equilibrium, is provided by an initialm

servovalve flow, which is derived from Equation 3.12 as :-

The spool position to give this flow is obtained from Equation 3.6, and ultimately

the applied current for equilibrium is derived from the servovalve spool gain, K .i

3.6.2 Controller Model Realisation

The controllers used within the simulation work presented later were implemented

using appropriate discrete time controllers, as implemented on the experimental system.

The controller model was augmented with blocks to mimic the effect of sampling and

quantisation on the analogue signals read in or output by the ADC and DAC boards

respectively. These effects are easily modelled in SIMULINK as quantisation and zero-

order-hold blocks are provided within its standard library. Reference signals within the

controllers were also subject to zero-order-hold blocks to create an entirely discrete

controller. Further modifications to the controller model were made by incorporating anti-

aliasing filters, again to match those present in the experimental setup.

3.6.3 Model Integration Algorithm

MATLAB offers a variety of integration algorithms, each type providing different
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performance in terms of speed and accuracy for different types of system being simulated.

The Runge-Kutta fifth-order integration method has been found to be the optimum for this

type of system, especially when a digital controller is utilised, as is the case here. This

algorithm outperforms the others when the system is highly nonlinear and/or discontinuous,

which is particularly true for this model with the inclusion of the contact model. This

algorithm performs well for all types of continuous, discrete and/or mixed systems. It does

not work well when the system has both fast and slow dynamics, however this can be

alleviated with suitable minimum time step sizes and tolerances.

The Runge-Kutta algorithm takes a variable time step size which is limited to within

a specified range, the step size used is chosen such that the required accuracy is maintained.

For this system, suitable values of minimum and maximum step size were found to be

1×10  and 0.1 seconds respectively.-5

The accuracy of the simulation is controlled using the tolerance parameter which

specifies the relative error of the integration at each step, a value of 1×10  was used. The-6

smaller this parameter is, the more steps the integration method will take, resulting in a

more accurate, but slower simulation.

3.7 Summary

This chapter has described the kinematic and dynamic models of the Slingsby TA9

hydraulic manipulator used throughout this thesis. This modelling has enabled the

controllers presented in subsequent chapters to be tried and tested on a realistic simulation

before being applied to the experimental manipulator. The work presented in this chapter

also provides a thorough understanding as to how hydraulic manipulators function, and the

implications that this has upon position and force control will be explored in later chapters.

The experimental manipulator, introduced in Section 3.2, was restricted to operation

in two degrees of freedom for the purpose of this thesis. This enabled the implementation
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to be simplified whilst maintaining the validity of the conclusions drawn from the

simulations and experiments. The kinematic model, Jacobian and frame definitions (see

Figure 3.2) of this restricted manipulator were presented in Section 3.3 and are used in

deriving the position and force controllers.

Section 3.4 derived the nonlinear mathematical dynamic model of a hydraulically

actuated robot, including models of the servovalve, fluid compressibility and the linear ram

acting about a pivot to actuate a revolute joint. The static characteristics of the actuator

model were visualised and compared to that of the often assumed ideal actuator in Section

3.4.3. The hydraulic actuator model was then incorporated into a generalised direct drive

manipulator model, yielding the overall robot model. A model of the contact between the

robot and a surface was then presented, and used with the robot model in the simulations.

The implementation of these mathematical representations of the robot and

environment in the MATLAB/SIMULINK simulation package was then discussed in

Section 3.5. This overall system model was used to obtain the simulation results presented

in the following chapters.
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Chapter 4

Self-tuning Controller Theory for
Robot Applications

4.1 Introduction

Currently, the control of manipulators is primarily achieved using fixed gain

schemes, this being due to their relative simplicity. For example on the Slingsby TA9,

analogue proportional only controllers are used as standard. Only the simplest of the

advanced controllers described in Chapter Two, are finding actual implementation.

However, the advent of high power, low cost microprocessors has made these more

advanced controllers feasible, with the associated advantages described in Chapter Two.

Self-tuning controllers are one particular type of advanced control scheme that are

particularly suitable for robotic applications. One of the main problems faced by designers

of robot controllers is the wide variations in dynamics that are encountered during typical

operations. These variations arise from changes in the configuration of the robot, payload

and acceleration, and are highly nonlinear as illustrated by the equations developed in

Chapter Three. A self-tuning controller is able to accommodate these changes in dynamic

behaviour by tracking the changes and adjusting its gains accordingly.

In this chapter the basic self-tuning pole placement controller is reviewed, first for

a single-input single-output (SISO) system, then for the multi-input multi-output (MIMO)

case. The SISO controller is applicable to independent joint control, whereas the MIMO

controller is suitable for the multivariable problems of Cartesian and hybrid control. The

application of these controllers to robot control is discussed, and a multivariable self-tuning
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Figure 4.1 Self-tuning Controller Functional Structure

pole placement controller is derived for the hybrid position/force control problem.

Emphasis is placed on the practical operating aspects of these control schemes,

including numerically robust and efficient algorithms.

4.2 Self-tuning Pole Placement Controllers

The papers of Wellstead [2.61] and Åstrom [2.62] were amongst the first to exploit

the idea of a self-tuning pole placement controller, though the concept of a "self-tuning"

system was first proposed by Kalman in the late 1950s. The theory developed here follows

these original formulations, and also includes additional concepts relevant to practical

implementation.

Self-tuning pole placement controllers work on the principle of continually

adjusting the controller gains, such that the closed loop system poles remain constant,

irrespective of changes in the system's dynamics. The controller has three components; a

low-order linear model of the process under control, an on-line system identifier and a pole

placement controller. Figure 4.1 shows these fundamental components.

The system identification block uses a recursive algorithm to fit past values of

inputs and outputs to a low-order linear model of the process. The identification mechanism



 The sample number takes integer values (0, 1, 2, 3, ...) such that the discrete time signal at sample k†

corresponds to the continuous signal at time k� , where �  is the sample period of the digital system.s s
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(4.1)

(4.2)

(4.3)

has a forgetting factor to allow the linear model to adapt as the system changes with

variations in operating conditions. The controller parameters are then determined using this

low-order linear model so that the characteristic polynomial of the closed loop system

matches some user specified polynomial.

 Though the process under control is a continuous time system, the controller is

discrete due to its implementation on a digital computer. Hence, the system input and

output, u(k) and y(k) respectively, are defined as discrete time signals, where k is the sample

number . The desired system output, or reference signal, is denoted y (k).†
d

The three elements that constitute the self-tuning controller will now be discussed

in detail.

4.2.1 The SISO Process Model

The process model used in self-tuning controllers is generally represented by a low-

order difference equation, where the output, y(k), is written in terms of past values of itself

and the input, u(k). Therefore, the process can be conveniently expressed as the following

ARMAX (AutoRegressive Moving Average Exogenous input) model, where e(k) represents

the error due to modelling :-

The terms a(z ) and b(z ) are polynomials of the form :--1 -1

and z  is the backward shift operator, defined by :--i
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(4.4)

and d  represents a constant unmeasurable drift disturbance, which in the general case is0

also a polynomial in z . However, in this application only a single term is considered,-1

n  = 1, and therefore the total number of model parameters, n , is defined as :-d �

The model represented by Equation 4.1 is a simplified version of a generalised

linear process model [2.57]. Not included here are terms used to model noise sources,

measurable disturbances and any higher order unmeasurable disturbances, as they were not

deemed necessary for this particular application.

The choice of model order and structure of Equation 4.1 should reflect the

underlying physical system, so that the modelling error is as small as possible. However,

with nonlinear systems it is difficult to determine an appropriate representation. In such

cases it is then prudent to use a simplified model which captures the dominant dynamics

of the system. One means of empirically determining the model order is to look at the loss

function [4.1]. Here, the modelling errors for different orders and structures are observed,

and a low modelling error indicates which is most appropriate.

4.2.2 SISO System Identification

When the process under control is unknown, the parameters of the model (Equation

4.1) need to be estimated, and this is the purpose of the on-line system identification block

in Figure 4.1. The system identifier fits the a, b and d  parameters using past values of the0

measured inputs and outputs of the process, so as to minimise a suitable error criterion.

There are several different procedures available to achieve the on-line identification,

namely recursive least-squares, recursive instrumental variables, recursive maximum

likelihood and extended least-squares. A survey of these methods is given in [2.56]. A



 The conventional expression used for y(k) when developing the RLS algorithm is y(k) = � (k)�(k)+e(k). The† T

alternative equation, presented above, is identical for a SISO process and also extends to the MIMO case, whereas the
conventional expression does not. This will be discussed further in the subsequent sections on MIMO self-tuning.
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(4.5)

recursive least-squares (RLS) algorithm was selected for this application for the following

reasons :-

     • parameter estimates converge quickly, allowing fast adaptation under unknown and

changing conditions.

     • requires relatively small computational effort, which is crucial for real-time control

of robots, which require high sample rates.

     • the high signal-to-noise ratios typical of robotic applications, enable RLS to

maintain high quality parameter estimates. The other methods outperform RLS

when there is a low signal-to-noise ratio.

Many forms of RLS exist, and the conventional matrix inversion lemma (MIL-RLS)

algorithm is developed initially. A numerically robust algorithm, using Bierman U-D

factorisation (BUD-RLS), is then described. It is this latter method which is used in

practice, to remove problems caused by accumulation of rounding errors over many

iterations.

To formulate the RLS identification algorithm, the process model, Equation 4.1, is

formulated in terms of the parameters to be estimated. A convenient expression is  :-†

where �(k) is the n ×1 vector of the estimated model parameters, and �(k) is the n ×1
� �

regression vector which is made up of past measured inputs and outputs of the process.

More specifically :-
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(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

The standard MIL-RLS algorithm provides a means of iteratively updating the

estimated parameters, �(k), at each sample instant, using the past input and output data

contained within the regression vector, �(k). Furthermore, if any of the model parameters

are fixed to zero, then �(k) and �(k) can be re-defined accordingly to reduce the number

of estimated parameters, n , and hence overall computational burden. The MIL-RLS
�

algorithm works by minimising the sum of the squares of the modelling errors, and its

derivation is given in [2.57], the result of which can be summarised as follows :-

At sample instant k,

Step 1: Read system output, y(k), and form �(k) using past input and output values.

Step 2: Calculate the a priori prediction error, �(k), as the difference between the actual

output and the predicted model output, using parameter estimates from the

previous sample, �(k-1). Therefore :-

Step 3: Form L(k), the Kalman gain vector, as :-

and, calculate the symmetric covariance matrix, P(k), using :-

Step 4: Update the parameter estimates, �(k) :-
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(4.11)

(4.12)

Step 5: Wait for next sample, k � k +1, and then loop back to Step 1.

The term � introduced in the above algorithm is called the forgetting factor, and is

defined as a number between 0 and 1. This acts as a bias, effectively reducing the influence

of older data which may no longer be relevant to the model. This allows the parameter

estimates to track changes in the process, allowing time varying and nonlinear systems to

be identified.

Practical values of � are usually in the range 0.95 to 1, and the smaller the value

used, the faster the estimates converge. However, decreasing � increases the sensitivity of

the estimation procedure to noise.

A further problem associated with the use of forgetting factors, is that it opposes the

tendency of the RLS algorithm to decrease the covariance matrix, P(k), as the estimates

become more accurate. If little or no new information is brought into the estimator, then

Equation 4.10 reduces to [4.2] :-

and hence the inclusion of a forgetting factor acts to increase P(k). If this occurs over a long

period then the covariance matrix can become large, causing loss of parameter

identifiability and destabilising the estimation process [2.57]. This process is called

covariance blow-up or estimator wind-up. There are several approaches to prevent this

occurring and is discussed in Section 4.2.4 in the context of operational issues.

The standard MIL-RLS algorithm, Equations 4.8 to 4.11, is not suitable for all

situations, such as cases which require numerical robustness, or where computational power

is limited. Many alternative algorithms exist, and are often used in preference to the



- 76 -

(4.13)

standard MIL-RLS.

Rounding errors, due to finite computer word length, can accumulate over long

periods of estimator operation. These errors affect the accuracy of the estimates, and more

importantly can cause the covariance matrix to become negative semi-definite, causing

divergence of parameter estimates. It is therefore good engineering practice to use a

numerically robust RLS for any practical implementation. One widely used numerically

robust approach is called the Bierman U-D factorisation (BUD-RLS) algorithm [4.3], and

is detailed in Appendix B. This uses the symmetric property of the covariance matrix to

allow the factorisation of P(k) as :-

where U(k) is an upper triangular matrix and D(k) is a diagonal matrix. This is equivalent

to calculating P(k) at twice the precision of the standard RLS algorithm, and ensures that

the covariance matrix remains positive definite [2.82].

Numerically efficient RLS algorithms have also been developed and are especially

important where large numbers of parameters are being estimated, however these generally

sacrifice numerical accuracy or stability for speed. It has been proposed [2.79] that

computational requirements can be reduced by calculating only the diagonal elements of

P(k) in Equation 4.10. Another approach would be to update the covariance matrix less

frequently, whilst maintaining the update rate of the rest of the identification process [2.63].

The symmetry of the covariance matrix can also be exploited to increase speed of

computation.

4.2.3 SISO Pole Placement Controller

With the system under control represented by a low-order linear equation, the

controller can be designed using the model parameters, to meet a specified closed loop
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Figure 4.2 Incremental Self-tuning Controller Structure

(4.14)

(4.15)

performance criterion. This results in a closed loop system which is unaffected by changes

in the underlying process, since the controller gains are automatically adjusted to maintain

the performance criterion. With a self-tuning pole placement controller the user specified

criterion is the desired characteristic polynomial which locates the closed loop system

poles, and hence dictates the response of the system.

Using the process model, Equation 4.1, the system block diagram can be redrawn to

include the controller, as shown in Figure 4.2. The controllers developed in this thesis are

used for reference tracking, rather than the problem of regulation, and hence incorporate

a digital integrator. This type of controller is termed an incremental controller, since it

generates the change in control signal and the digital integrator forms the actual control

signal. Incremental controllers are widely used in industrial applications as they ensure zero

steady-state error in the presence of offsets and unmodelled disturbances, and allow

bumpless transfer between different controllers [2.57].

The controller polynomials, f(z ) and g(z ), are defined as :--1 -1

and the closed loop transfer function of the controlled system shown in Figure 4.2 is :-
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(4.16)

(4.17)

(4.18)

The desired closed loop system pole locations are defined by the polynomial t(z ).-1

The controller polynomials, f(z ) and g(z ), that realise these desired poles are obtained by-1 -1

equating the denominator of Equation 4.15, the characteristic equation, to t(z ) :--1

where t(z ) is defined as :--1

Equation 4.16 is solved for the controller polynomials by equating like powers of z,

resulting in a set of simultaneous linear equations which yields expressions for f and g in

terms of a, b and t. For a unique solution of Equation 4.16 to exist, the orders of the f, g and

t polynomials must meet the following constraints :-

For the majority of applications first and second order t(z ) polynomials are sufficient-1

to provide the desired system response.

The set of simultaneous equations can be represented as a matrix expression, though

for the general case this representation becomes inconvenient. Explicit solutions of the

controller polynomials for the different model orders used throughout this thesis are

presented in Appendix C. These solutions include a controller for use with a process model

order of n  = 2, n  = 1, which corresponds directly to a self-tuning PID.a b

The controller output, u(k), is calculated at each sample instant from the controller

polynomials and the digital integrator, according to the structure given in Figure 4.2. Since

the polynomials f(z ) and g(z ) are dependent upon the parameter estimates, �(k), this-1 -1

calculation is performed after Step 4 in the RLS algorithm given in the previous section.
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(4.19)

Figure 4.3 Alternative Incremental Self-tuning Controller Structure

The inclusion of the disturbance parameter, d , in the process model does not alter0

the equations that define the incremental controller. With such a term included, the overall

closed loop equation (Equation 4.15) becomes :-

The second term on the right hand side of Equation 4.19 governs the system response

to any disturbance, and this has poles given by t(z ) as required. Further, the effect of the-1

(1-z ) term, introduced by the digital integrator, is to exactly cancel any disturbances at low-1

frequencies, since z = 1 in the steady state.

Without integral action, a non-zero controller output is required to compensate for

the disturbance, d . This also enables the controller to reject time varying disturbances,0

whereas other techniques often rely on the disturbance being constant [2.57].

The closed loop transient response is dominated by the poles of the system, specified

by t(z ), however the system zeros, given by b(z )g(z ) in Equations 4.15 and 4.19, also-1 -1 -1

contribute. Direct manipulation of the system zeros is possible [2.62], however this is

complicated and results in an unstable system when used with a nonminimum phase

process [2.78]. If the transient response is unacceptable due to the effect of the system

zeros, one possible solution is to use the modified control law shown in Figure 4.3.
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This removes the contribution of the g(z ) polynomial to the closed loop system-1

zeros, resulting in the following closed loop transfer function (cf. Equation 4.15) :-

The presence of a feedback loop can cause identifiability problems in the estimation

part of the self-tuning control system. This problem stems from the fact that with a closed

loop system the input, u(k), is dependent upon the output, y(k), which can lead to the

covariance matrix becoming ill-conditioned due to linear dependency among the rows of

P(k). The problem is alleviated by using time varying or nonlinear controllers, or by using

a persistently exciting signal as discussed in the following section.

The self-tuning controller design equations (Appendix C) can also be used to tune

the gains of a corresponding fixed gain controller. RLS identification is used to obtain the

parameter estimates of the process when operating under typical conditions. These

parameter estimates are then used in the design equations to give a set of constant controller

gains, so as to meet the specified performance criterion. Obviously, the resulting fixed gain

controller will not maintain the desired response when the operating conditions vary, as the

adaptability of the controller is no longer present, nevertheless it will produce the required

response under the nominal conditions. This form of off-line design removes the need for

troublesome manual tuning of a fixed gain controller, which is often problematic.

4.2.4 Operational Issues of Self-tuning Controllers

To ensure that a self-tuning controller will reliably work, there are many aspects of

the system that require careful consideration before the controller is used. Firstly, there is

the correct initialisation of the controller, and secondly there is the need to ensure that the
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(4.21)

various components of the controller continue to function properly.

To initialise the estimator, suitable values for �(0), �(0) and P(0) (or U(0) and D(0)

in the case of the BUD-RLS) are required. The usual way to attain the initial regression

vector, �(0), is to allow it to fill with system data for the required number of samples,

before the estimator is turned on. The initial parameter estimates, �(0), can be specified

if known, from either knowledge of the process or a priori identification. However, if little

or no knowledge of the process is available, then an alternative is to assume that the process

acts as an integrator with unity gain, so suitable initial model parameters would be :-

where �  is the sample period of the controller.s

The value used for P(0) should reflect the uncertainty in the initial parameter

estimates. When �(0) is well known a small value of P(0) is used, typically P(0) = I. On

the other hand if there is no prior knowledge then a higher value, e.g. P(0) = 100I, allows

the estimates to converge quickly to the true values. For the BUD-RLS algorithm this

uncertainty is similarly reflected in D(0), whilst U(0) is initialised to the identity matrix.

The rate of convergence is also dependent upon the forgetting factor, �, which is set

to reflect the variability of the system parameters during typical use. However, a variable

forgetting factor can be employed when �(0) is not well known. An initial low value of �

allows the estimates to converge quickly, and is then increased with time to the required

value.

Often when self-tuning controllers are presented, no a priori knowledge is utilised,

even though this assumption can be met under most circumstances. In such cases there is

usually a period where the system is controlled using a default, usually fixed gain
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controller. This allows the parameter estimates to converge before the self-tuning controller

is started. However, during this convergence period the control is poor due to the use of the

default control and this degradation defeats the purpose of using an advanced controller to

a certain extent.

The alternative is to obtain initial estimates of the process model that are closer to

the true values, enabling the self-tuning controller to be introduced sooner. As mentioned

earlier, these initial estimates can be obtained from an analytic model of the process, or

from off-line estimation using previous system responses. The former involves linearisation

of the model about a set point, whilst off-line estimation simply utilises the same

identification algorithms described earlier.

To obtain good estimates, either on-line or off-line, the excitation signal needs to

meet the requirement of persistent excitation. This ensures that the dominant process modes

are excited, enabling the estimates to converge to their true values. Suitable input signals

are square wave, pseudo-random binary noise or white noise, with the former being most

practical for real implementations. The frequency content of the signal should be sufficient

to excite the major modes of the process. For a square wave a rule of thumb is to use a

period approximately six times the major time constant of the system [2.57].

The requirement of persistent excitation also needs to be maintained during the

operation of the self-tuning controller. If this cannot be met, then the eigenvalues of the

covariance matrix will tend towards zero or become large, leading to destabilisation of the

estimator and the controlled system. This is suppressed by using one or more of the

covariance management techniques described below :-

Constant Trace Algorithms: These work by automatically bounding the size of P(k) within

the algorithm.

Directional Forgetting: Here, a forgetting factor is used to update only those parameters
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for which new information is available.

Variable Forgetting: The forgetting factor can also be specified as a function of the

prediction error, �(k), such that when the error increases the forgetting factor decreases

allowing the model to adapt.

Estimator Dead-zone: This method suspends the estimation process during periods of low

excitation. By monitoring the prediction error the estimator can be re-started when

necessary.

Covariance Resetting: Periodic or heuristically determined resetting of P(k). This method,

however, has been reported to give oscillatory parameter estimates [2.83].

Dither Signals: The requirement for persistent excitation of the process can be met by

super-imposing a dither signal (e.g. a square wave) on the input. This can degrade the

steady state output of the system, and may exceed the required accuracy of the system.

This functionality is lumped under the term jacketing software, as it surrounds the

self-tuning controller to ensure the integrity of the overall system. Monitoring functions

may also be included, for example control limit checking. If the controller output reaches

a saturation limit, then this may be an indication that there is a problem, and the control

could be either reset, or switched to a backup controller.

Finally, the choice of sample period, � , is important for the correct operation of as

self-tuning controller. As an initial guide it should be about between 0.25 and 0.1 times the

dominant process time constant.

4.3 Application of SISO Self-tuning Controllers to Robot Control

Self-tuning control is particularly suitable for robot control since the large changes

in robot dynamics that occur during typical operations, can be tracked and compensated

automatically. This section considers the SISO problem of controlling the position of
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(4.22)

individual joints. Cartesian position control and hybrid position/force control require a

MIMO controller, and will be discussed later. Self-tuning controllers have been applied to

the control of the individual joints of manipulators [2.79, 2.59, 1.13], with each joint

process assumed to be independent of the others. This assumption is valid when the

manipulator is moving slowly, further, if the coupling between joints does become

significant then it is simply treated as a disturbance.

Each joint is modelled as a discrete time difference equation, in the form of Equation

4.1, with the input corresponding to the actuator input and the output taken as either the

joint angle or the joint angular velocity. Tachometers, that give the angular velocity

measurements, are generally found only on specialised laboratory robots. The manipulator

used here, the Slingsby TA9, only has joint angle sensors, and so only positional outputs

are considered in the following discussion.

The model order used for self-tuning control of manipulators is often chosen so as

to result in a simple control scheme, for example the self-tuning PID [2.79]. However, it

is preferable to reflect the underlying physical system as closely as possible. The nonlinear

expression representing the dynamics of a generalised n DOF manipulator, given by

Equation 3.27, can be linearised about a set point and then discretised using Euler's method

[2.59]. This results in the following multi-input multi-output discrete time autoregressive

model :-

where �(k) are the outputs (a n×1 vector of joint angles) and �(k) are the inputs (a n×1

vector of joint torques), A  and B  are n×n matrices, and D  and E(k) are n×1 vectors, withi i 0

A , B , and D  constituting the MIMO model and E(k) representing the modelling errors (cf.i i 0

Equation 4.1).

This MIMO model can be simplified by neglecting the coupling between the joints
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(4.23)

(4.24)

of the manipulator, represented by the off-diagonal terms of the A and B matrices.

Therefore, treating each joint as a separate SISO system, Equation 4.22 becomes :-

where �(k) and �(k) are the joint angle and joint torque respectively for each joint. This

model corresponds to that given in Equation 4.1 with n  = n  = 2. The scalars a  and ba b i i

model the effects of inertia and damping of the link, and d  can be interpreted as modelling0

the effects of gravity on the links and offsets within the actuation mechanism. To represent

a n DOF manipulator requires n of these independent equations, with any coupling between

joints being treated as a disturbance to the SISO model, also embodied in d .0

This representation assumes that the actuator acts a pure torque source, however this

is not appropriate for hydraulic actuators, as used by the Slingsby TA9. These actuators are

primarily rate driven, where the velocity of the actuator is proportional to the applied

servovalve voltage, v(k). Hence, these actuators are often approximated by an integrator

[2.6], which can be modelled by introducing an extra pole into the joint model, increasing

n  to 3 :-a

The SISO joint model of Equation 4.24 is used in this thesis, together with simpler

models that yield self-tuning PI or PID controller structures for the purposes of comparison.

The controllers that correspond to these models are derived in Appendix C.

Many different model orders and structures have been proposed in the literature,

when self-tuning controllers have been applied to the independent control of manipulator

joints. The model used is dependent upon the manipulator instrumentation and actuation

mechanism, although as mentioned earlier it is sometimes chosen to provide a certain order
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of controller. The SISO joint models used in this thesis [1.13] and those used in previously

proposed self-tuning robot controllers, as discussed in Section 2.5.3, are summarised in

Table 4.1.

When using any form of controller with a robotic arm, a sample rate of typically 50

Hz and upwards is required, depending on the particular manipulator. The computational

complexity of self-tuning controllers is often cited as the reason for their exclusion from

this application. However, the use of fast and inexpensive microprocessors coupled with

the efficient estimation algorithms described in Section 4.2.2, have removed this restriction

for all but a few cases.

The Bierman U-D factorisation (BUD-RLS) algorithm should be employed to

eliminate problems associated with numerical round-off, and to ensure that the covariance

matrix remains in good condition. The use of a priori estimates for the initial system

parameters has been shown to improve the initial response of a self-tuning controller [2.63],

and so should be used whenever possible.

A forgetting factor is required to allow the controller to adapt to changes in the robot

dynamics as it performs tasks, with forgetting factor set according to the anticipated

variability of the system parameters. The inclusion of a forgetting factor motivates the need

for covariance management as discussed earlier in this chapter. This should also alleviate

problems caused by not fully satisfying the criterion of persistent excitation, which may

result from the trajectory required to achieve the task. In a practical installation, a simple

backup controller should become automatically available if problems with the self-tuning

controller are detected.

4.4 Multivariable Self-tuning Control

The development of the self-tuning controller in Section 4.2 pertained to a single-

input single-output (SISO) system. In this section the work will be extended to the multi-
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na nb nd n
����

n DOF Input Output Notes:

Koivo [2.59] 2 2 1 4 6 motor voltage joint velocity a  = 0.1

Lelic [2.64] 2 2 1 5 1 motor voltage joint angle Uses internal velocity feedback loop.

Karam [2.79] 2 1 0 3 6 motor current joint angle To give self-tuning PID.

Broome [2.80] 2 2 0 4 2 joint torque joint angle Ideal torque source actuators.

Finney [2.78] 3 2 0 5 1 servovalve voltage linear position linear hydraulic actuator acting in a
horizontal plane, hence n  = 0.dPlummer [2.81] 3 3 0 6 1 servovalve current linear position

Sepheri [2.60] 3 3 1 7 2 servovalve spool posn. joint velocity Rotary hydraulic actuators.

Sepheri [2.60] 2 2 1 4 2 differential actuator
pressure

joint velocity a  = 0. Cascaded with a classical controller,1
which controls the hydraulic actuator.

Ananthakrishnan [2.68] 2 2 0 4 4 servovalve voltage joint angle Rotary and linear hydraulic actuators.

Eun [2.84] 2 2 1 5 3 joint torque force/position Puma 560 with ideal torque sources.

Koivo [2.26] 2 1 1 4 3 joint torque joint angle Ideal torque source actuators.

Wang [2.85, 2.86] 2 2 0 4 3 end-effector posn. contact force Puma 560 with passive compliance.

Clegg [1.13, 2.87] 3 2 1 6 1 servovalve voltage joint angle TA9. Rotary and linear hydraulic actuators.

Clegg [1.13, 2.87] 2 1 0/1 4 1 servovalve voltage joint angle As above. To give self-tuning PID.

Table 4.1 Different Model Orders and Structures used for SISO Self-tuning Control of Manipulator Joints

Notes:
1) n is the number of joints to which the independent controllers were applied.
2) The details of the specific self-tuning controllers used are given in Chapter Two.
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(4.25)

(4.26)

input multi-output case (MIMO) for a system with n inputs and n outputs, denoted by the

vectors U(k) and Y(k) respectively. This type of scheme can be used to control the entire

robot as a single system, including the coupling between joints. The initial extension of the

SISO self-tuner to a MIMO system was proposed by Prager [4.4] and the theory developed

here follows the original formulation.

The MIMO controller is structurally identical to the SISO scheme, with a MIMO

model of the process, an on-line MIMO system identifier and a MIMO pole placement

controller (cf. Figure 4.1). However, the use of matrices requires careful consideration of

the order in which they appear, since matrix arithmetic is not commutative. This results in

an additional step when deriving the controller polynomials which will be detailed later.

The three components of the multivariable self-tuning controller will now be

discussed in turn.

4.4.1 The MIMO Process Model

The low-order linear model of a n-input, n-output process can be represented as :-

which compares directly with Equation 4.1, where the MIMO equivalents of the SISO

parameters are designated by their uppercase equivalents. A(z ) and B(z ) are polynomial-1 -1

matrices in the backward shift operator z , and are of the form :--i

where A  and B  are n×n matrix coefficients. Similarly, D  and E(k) are n×1 vectorsi i 0

representing the constant unmeasurable drift disturbances and modelling errors. Therefore

the total number of model parameters for the MIMO model, n , is :-
�
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(4.27)

(4.28)

(4.29)

(4.30)

The diagonal elements in the A  and B  matrices reflect the relationship between thei i

nth input and nth output, whereas the off-diagonal terms model the coupling between the

different inputs and outputs. Again the model order and structure should be chosen to

reflect the continuous time process being modelled. However, the number of parameters

to be estimated, Equation 4.27, may quickly become excessive and often only low order

models may be feasible.

4.4.2 MIMO System Identification

MIMO system identification is a simple extension of the SISO RLS algorithm

(covered in Section 4.2.2) which iteratively estimates the model parameters using past

values of the actual system inputs and outputs. Again, the process model, Equation 4.25,

is formulated in terms of the parameters to be estimated (cf. Equation 4.5) :-

however now, the estimated model parameter matrix, �(k), is a (n n+n n+n )×n matrix anda b d

the regression vector, �(k), is a (n n+n n+n )×1 vector. More specifically :-a b d

The SISO MIL-RLS algorithm, Equations 4.8 to 4.11, is extended to the MIMO case

simply by modifying Step 4 to accommodate the new structure of �(k). The remaining

steps are the same as the SISO case, with the a priori prediction error, 	(k), the Kalman

gain vector, L(k), and the covariance matrix, P(k), sized appropriately. Step 4 becomes :-
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(4.31)

Step 4: Update the parameter estimates, �(k) with i = 1, 2, ..., n :-

where � (k) is the ith column of �(k), and 	 (k) is the ith element of the a priorii i

prediction error vector.

This modification can also be applied to Step 7 of the numerically robust BUD-RLS

algorithm (see Appendix B) to extend it to the MIMO case, with the other terms sized

accordingly.

The operational issues of the SISO RLS estimator, presented in Section 4.2.4, are

equally applicable to the MIMO case. Correct initialisation is important, as is the use of

covariance management and jacketing software to maintain persistent excitation of the

system and prevent covariance blow-up. However, the use of a single forgetting factor, �,

may be inappropriate for a MIMO process, and more complex schemes may be required to

allow different adaptation rates for different parts of the system.

The estimation algorithm for the multivariable case does not involve much extra

computation compared to a SISO system with the same number of parameters. This is

because the columns of �(k) are updated using the same covariance matrix, P(k). However,

MIMO process models generally have many more parameters than an equivalent number

of independent SISO models. For example, the n-input n-output MIMO model can be

replaced by n SISO models, and from Equations 4.27 and 4.4 respectively :-

Number of parameters for MIMO representation = (n n+n n+n )n,a d d

Number of parameters for n SISO models = (n +n +n )n.a d d

The extra terms in the MIMO case represent the coupling between different inputs
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(4.32)

(4.33)

(4.34)

and outputs. With so many parameters to be estimated, any terms which can be fixed to

zero will significantly reduce the computational requirements of such an algorithm. The use

of this technique in robot control will be discussed in Section 4.5.

The system identification part of a self-tuning controller is the most computationally

intensive, and this increases exponentially with the number of inputs/outputs.

4.4.3 MIMO Pole Placement Controller

The multivariable self-tuning pole placement controller originally proposed by Prager

[4.4] was derived for the regulator problem. Here, this is extended to provide reference

tracking, incorporating a digital integrator to form an incremental controller, as for the

SISO controller. The structure of the controller is identical to the SISO controller, shown

in Figure 4.2, with the MIMO parameters denoted by their uppercase equivalents :-

where F  and G  are n×n matrix coefficients.i i

Due to problems associated with the non-commutivity of the matrix polynomials, the

controller must initially be cast in the following form :-

Using this formulation, the overall closed loop transfer function of the controlled

system can be derived to give the following, which corresponds to that for the SISO case

(cf. Equation 4.15) :-

The closed loop system poles are set to some specified values, defined by the roots
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(4.35)

(4.36)

(4.37)

(4.38)

of the polynomial matrix T(z ), by solving the following equation for the controller-1

polynomials, F(z ) and G(z ) :--1 -1

where :-

and T  are n×n matrix coefficients.i

Equation 4.34 is solved by equating like powers of z, resulting in a set of

simultaneous linear equations which can be solved to give expressions for F and G in terms

of A, B and T. For a unique solution to exist, the orders of the F, G and T matrix

polynomials must meet the constraints of Equation 4.18. The solution to Equation 4.35 can

be represented as a matrix expression, though again for the general case this becomes

inconvenient. Specific solutions for the different model orders used in this thesis are

presented in Appendix C, and have a similar form to the equivalent SISO solutions.

The controller given by Equation 4.33, is not directly implementable due to matrix

non-commutivity [4.4], so it must be transformed into a realisable form. One method to

achieve this involves using the pseudo-commutivity relation :-

which, when substituted into Equation 4.33, gives the following realisable controller :-

The solution to Equation 4.37 again yields a set of simultaneous equations specific

to the polynomial orders used, and the explicit solutions particular to this thesis are given

in Appendix C. Simpler approaches to obtain a realisable controller do exist [4.5], however
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these can be problematic when nonminimum phase dynamics are present, so the generalised

solution is used here.

The controller polynomials are calculated at each sample instant after Step 4 of the

RLS algorithm, once �(k) has been updated. Then the pseudo-commutivity transformation,

Equation 4.37, is applied and the controller output, U(k), is calculated using Equation 4.38.

Similar analysis to that for the SISO controller, shows that the MIMO incremental

controller equations are not altered by inclusion of the disturbance parameters, D , in the0

process model. Also, if the transient response is unacceptable due to the effect of the system

zeros, a modified control law (cf. Figure 4.3) can be used to reduce the effect of the G(z )-1

polynomial.

4.5 MIMO Self-tuning Control of Robots

The MIMO self-tuning controller described in the previous sections can be applied

to the control of a robot manipulator in a number of ways. The process input is taken as the

vector of joint torques, �(k), or actuation signals, for example a vector of actuator voltages.

The process output can take a variety of forms depending upon the required control.

Firstly, the output can be taken as a vector of joint space variables [2.59], either joint

positions or velocities, corresponding to the robot model of Equation 4.22. The diagonal

elements of the matrices relate each joint output to its own actuation signal, and conversely

the off-diagonal terms represent the coupling between the joints.

An alternative approach is to take the process output as a vector of end-effector

Cartesian coordinates [2.63], again either positions or velocities. This is known as

Cartesian control and only requires the forward kinematics rather than the complicated

inverse kinematics, as shown in Figure 2.1.

The Cartesian control strategy can be extended to the case where the manipulator is

constrained by a surface, namely the well known hybrid position/force control problem
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[2.89, 2.40]. This uses a process output vector consisting of forces and torques in the

constrained directions, and positions and orientation in the orthogonal directions. These

Cartesian space control schemes are advantageous since manipulation tasks naturally

decompose into this frame of reference, both in terms of desired outputs and control

performance criterion.

The model order and structure used by the self-tuning controller should reflect the

underlying continuous time system. The extension to the Cartesian control schemes does

not introduce any additional dynamics, since the forward kinematics involves trigonometric

functions, and the interaction of the robot with the environment is approximated by the

expression of Equation 3.29. Hence the model order derived for the SISO systems is equally

applicable to these MIMO cases.

A summary of the MIMO robot models used in this thesis [2.40] and those used in

previously proposed self-tuning MIMO robot controllers, is given in Table 4.2. These will

now be described in more detail.

Koivo's initial work on MIMO self-tuning robot controllers [2.59] still operated in

joint space, controlling the joint angle velocities. The natural decoupling of the manipulator

was used to divide the control into two 3 DOF systems. This reduced the complexity of the

multivariable model to a manageable level, with the A  matrix being partitioned into two2

3×3 matrices. The A  matrix was set to zero, and the B  matrices were diagonal, which1 i

reduced the number of model parameters to 36 for the 6 DOF system. However, this MIMO

controller did not show any improvements over the use of equivalent SISO controllers.

The work was extended to a MIMO Cartesian controller in [2.63], where Cartesian

velocities were used as the system output for a 3 DOF robot. A low model order was used

(n  = n  = n  = 1), and by setting A  to be diagonal this resulted in only 15 parameters toa b d 1

estimated. The rationale for making A  diagonal, was that the Cartesian outputs are1

orthogonal, and hence independent of the outputs in the other directions.



- 95 -

na nb nd n DOF n
����

Model Input Model Output Notes:

Koivo [2.59] 2 2 1 6 36 motor voltages joint velocities A  = 0, A  partitioned into two 3×3 matrices1 2
to match coupling of robot, B  = diagonal.i

Koivo [2.63] 1 1 1 3 15 motor voltages Cart. velocities A  = diagonal.1

Koivo [2.63] 1 1 1 3 24 motor voltages Cart. positions
and velocities

A  = diagonal. Extended to control of both1
Cartesian position and velocity.

Koivo [2.89, 2.26] 1 1 1 2 8 joint torques Cart. velocities A  = diagonal. Model used within a MIMO1
position-velocity-force controller.

Ozsoy [2.90] 2 2 0 2 16 joint torques Cart. velocities
and force

derivatives

Small ideal manipulator

Clegg [2.40 and
Chapter Seven]

3 2 1 2 22 servovalve voltages Cart. position
and force

Linear hydraulic actuators.

Table 4.2 Different Model Orders and Structures used for MIMO Self-tuning Control of Manipulators

Notes:
1) n is the number of DOF to which the MIMO controller was applied.
2) The details of the specific self-tuning controllers used are given in Chapter Two.
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Koivo also investigated the application of the same low order model structure to

achieve a type of self-tuning hybrid position/force control [2.26]. In this scheme, the force

and position errors are embedded within the LQG controller design criterion, but are not

specifically used within the MIMO model which uses the Cartesian velocities of the robot.

This was extended by Ozsoy [2.90], who used a MIMO square-root parameter estimation

algorithm together with a minimum variance controller. The estimated model used n  = 2,a

n  = 2 and 2 DOF, giving a total of 16 parameters to be estimated.b

The self-tuning hybrid position force controller presented in Chapter Seven of this

thesis [2.40] extends this further, employing a MIMO process model which explicitly uses

the end-effector forces and positions as the system outputs. The controller is applied to the

2 DOF hydraulic manipulator described in Chapter Three. In this case, the system has two

servovalve input voltages, v (k) and v (k), and the output consists of the Cartesian position1 2

along the y-axis, y(k), and the force along the x-axis, F (k).C C C C
x

With this manipulator, the coupling between the orthogonal force and position

controlled directions was significant enough to require the inclusion of the off-diagonal

elements in the model matrices. This resulted in a model with 22 terms to be estimated.

This increases rapidly when extended to robots with more DOFs, for example a 6 DOF

robot would require n  = 186 parameters. The actual computational requirements will be
�

quantified for this scheme, when the experimental implementation is discussed later.

4.6 Summary

This chapter has introduced the concept of system identification and self-tuning

control, including the extension to multivariable systems. The application of both SISO and

MIMO self-tuning controllers to various robot control problems has been discussed,

including the approaches proposed in previous work.

The structure of the controllers have been described in detail, including presentation



- 97 -

of both the conventional MIL-RLS and numerically robust BUD-RLS system identification

algorithms. The important issues concerning initialisation and practical operation of these

controllers have also been covered.

The derivation of both SISO and MIMO pole placement controllers has been

presented, with the specific solutions used in this thesis being given in Appendix C. The

use of an incremental controller was introduced, together with an alternative structure to

alter the influence of the controller zeros, if required.

Subsequent chapters will detail the specific implementations of the self-tuning

controllers discussed here, with application to both real and simulated manipulators. An

independent SISO self-tuning joint angle controller is presented in Chapter Five, and

compared to a conventional fixed gain controller. The results for a fixed gain hybrid

position/force controller are given in Chapter Six, which is then compared with a self-

tuning MIMO controller in Chapter Seven.
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Chapter 5

SISO Self-tuning Pole Placement
Joint Angle Control

5.1 Introduction

This chapter presents a SISO self-tuning pole placement controller to control the

joint angles of a typical hydraulic underwater manipulator. This work demonstrates the

feasibility and benefits of using self-tuning control over conventional fixed gain PID

controllers, under a variety of operating conditions. This forms the preparatory work to the

practical development of a MIMO self-tuning hybrid position/force controller discussed in

Chapter Seven. Consequently, the operational issues of using self-tuning control with such

a manipulator are studied extensively. The SISO self-tuning controllers developed here are

applied within the structure shown in Figure 2.1a, with the advantages and disadvantages

of such a scheme having being discussed in Chapter Two.

The experimental setup is described first, then the procedures involved in operating

a self-tuning pole placement controller with this robot are detailed. This includes

investigating the different algorithms and operational issues needed for reliable system

identification. The performance of this controller is compared directly with a conventional

fixed gain controller under a variety of operating conditions, examining both transient and

steady-state performance.

5.2 Experimental Setup

The experimental robot used in this work is a Slingsby TA9 hydraulic manipulator,
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which is widely used by the offshore industry in the North Sea. This robot has already been

described in Section 3.2 and is shown in Figure 3.1. The analogue proportional controllers,

that are employed as standard, have been replaced by purpose built interfacing circuitry and

digital controllers.

The analogue signals from the robot comprise the potentiometer outputs located at

each joint, and the force/torque sensor outputs. These signals pass through dedicated signal

conditioning hardware which provides adjustable gains and level shifting to ensure that the

full dynamic range of the analogue to digital convertors (ADCs) is used. Anti-aliasing

filters and buffering are also included as appropriate in this signal conditioning. The

potentiometer output voltages are assumed linearly proportional to the joint angles, and are

routinely calibrated by driving each joint to its mechanical end-stops, and reading the

corresponding voltages at the ADC. These voltages are then used to determine the linear

relationship between voltage and joint angle. No such calibration procedure is required for

the force/torque sensor as it is a factory calibrated unit.

The controller outputs, from the digital to analogue convertors (DACs), are

converted by a voltage to current amplifier into an appropriate driving signal for the

electrohydraulic servovalves. The gains of these current amplifiers are adjusted so that full

scale DAC output produces full scale servovalve current. The ADC and DAC signal

conditioning circuitry is duplicated for each potentiometer and servovalve respectively. The

TA9 manipulator has 7 joints and when coupled with the six DOF force/torque sensor gives

a total of 7 inputs and 13 outputs.

The real-time control algorithms are implemented on a Texas Instruments

TMS320C30 32-bit floating point digital signal processor (DSP), hosted by a proprietary

Loughborough Sound Images (LSI) PC card. This is connected to a 32 channel 12 bit ADC

board and a 16 channel 12 bit DAC board, which interface directly with the signal

conditioning circuitry. These cards are hosted by a 486 PC, which provides power to all
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three boards and a common dual-ported memory area that allows the PC to access the

digital controllers.

The control algorithms are programmed in 'C', with the coding and compilation

being carried out on the PC. The resulting object code is downloaded to the DSP via the

dual ported memory, using LSI run-time library routines. The use of a high level language

such as 'C', allows complex controller functions to be developed efficiently and the

resulting assembler code produced by the DSP's compiler is highly efficient.

Although there is only one DSP, the requirement for an individual controller for

each of the joints is met by operating the controllers sequentially. That is, the control for

each joint is performed successively, and therefore the controller sample rate is determined

by the number of joints being controlled and the time between successive joints. For

example, to control 7 joints at an individual sample rate of 50 Hz, requires successive joints

to be updated every 2.86 ms (350 Hz). In this system, this controller update rate is

determined by a clock on the ADC card, which synchronises the reading of joint angle

values in the main control loop. Synchronisation between the PC and DSP is also

maintained at this sample rate, so that the data accessed by the PC remains current.

The PC supervises the operation of the controllers running on the DSP, storing data

for off-line analysis and providing a graphical user interface (GUI) that allows access to the

various controller parameters. The controller reference values can be set via the keyboard,

or the standard master arms which also interface to the DSP (via the signal conditioning and

ADC boards) to realise master slave control. The PC allows the user to record joint angles

and use them later as controller references, providing a teach and play facility.

The supervisory PC also enables higher level systems, such as motion planning and

task planning, to interface to the low level controllers as shown in Figure 1.1. These high

level systems are implemented on UNIX systems and communicate with the PC over a

LAN ethernet link using TCP/IP. A trajectory interpolator is used to smooth the values
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generated by the motion planner, since this operates at a much lower update rate than the

controller. This interpolation is performed on-line by the DSP which fits a fifth-order

polynomial to the discrete values [5.1]. The independent joint angle controllers developed

in this thesis have been successfully integrated with an on-line motion planner [1.9] that

solves the inverse kinematics (see Figure 2.1a). The resulting system was capable of real-

time trajectory following and obstacle avoidance [1.4], however, this work is not presented

in this thesis.

5.3 Practical SISO System Identification

The first stage in designing a self-tuning controller is the development of the system

identification block, shown in Figure 4.1. This section presents practical RLS system

identification of the joints of the TA9 manipulator, and investigates the operational issues

described in Section 4.2.4. Selection of suitable model orders and structures have been

discussed at length in Section 4.3, and the ideas introduced there are reinforced with

experimental results.

The two manipulator joints used in this work are the forearm rotate joint, driven by

a rotary hydraulic actuator, and the elbow joint which uses a linear actuator acting about a

pivot. All seven actuators of the manipulator are under control during this work, each using

a fixed gain PI controller of the form given by Equation C.3. These are implemented on the

DSP and are sequentially controlled at a sample rate of 51 Hz (�  = 19.6 ms) for each joint,s

which is used throughout this chapter.

Persistent excitation of the system identifier is required to ensure that good system

estimates are obtained, as discussed in Section 4.2.4. This is achieved by commanding the

joint to execute a series of steps. The response of the forearm rotate joint stepping between

210° and 170° with a period of 8 s, is shown in Figure 5.1. The PI controller used has gains
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 The controllers were developed to act on joint angle errors represented by potentiometer voltages. The reason†

for this is that for certain joints the direction of motion caused by a positive control signal does not correspond to a
positive joint angle (as defined by the Denavit-Hartenberg convention described in Section 3.3 and modelled by k  in

�dir
Equations 3.20 and 3.21). The use of potentiometer voltages within the controller removes this inconsistency.
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Figure 5.1 Response of Forearm Rotate Joint under Fixed Gain PI Control

Figure 5.2 Fixed Gain PI Controller Output

of k  = 15.0 and k  = 20.0 , which were obtained using a priori system estimates as describedp i
†

later in Section 5.4. The corresponding controller output is shown in Figure 5.2

The RLS algorithm described in Chapter Four, generates parameter estimates from

past values of the system output and input, the joint angle (represented as a potentiometer

voltage) and servovalve input respectively. To facilitate the investigation of the effect of

different RLS operating parameters, this initial system identification is performed off-line.

This removes effects attributable to differences between experimental runs, as identical

sequences of input and output data are used. The off-line RLS algorithm was implemented
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Figure 5.3 RLS Parameter Estimates for Forearm Rotate Joint

as an m-file in MATLAB matching the on-line RLS algorithm programmed in 'C' running

on the DSP.

Initially, the standard Matrix Inversion Lemma RLS algorithm (MIL-RLS) is

employed, together with a model order that represents the physical system, n  = 3, n  = 2a b

and n  = 1. The six parameter estimates resulting from the forearm rotate joint response ofd

Figures 5.1 and 5.2, are shown in Figure 5.3. No prior knowledge of the system model is

assumed, with the initial parameter estimates, �(0), specified to represent an integrator, cf.

Equation 4.21. The use of a priori estimates is investigated in the next section. The initial

value for the covariance matrix, P(0), is set to 100I to reflect this uncertainty, and a

forgetting factor, �, of 0.995 is used. Under these conditions, the parameter estimates vary

as shown in Figure 5.3.

These parameter estimates show a relatively large degree of variation during the

experiment. However, it is more useful to examine the poles, zeros and gain of the
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Figure 5.4 RLS Estimates of Poles, Zeros and Gain for Forearm Rotate Joint

estimated model as these provide a better insight into the underlying physical process. The

discrete time poles, zeros and gain corresponding to the parameter estimates and ARMAX

model given by Equations 4.1 and 4.2, are shown in Figure 5.4.

As can be seen the poles converge faster and more smoothly than the individual

polynomial coefficients that they are derived from. Also, the integrating nature of the

system is clear, with one of the poles quickly attaining the value 1.0, corresponding to a

discrete time integrator. The two remaining poles are located inside the unit circle which

describes the area of stability for discrete time systems. The zeros are less important in

terms of system response, one being located at the origin, due to the structure of the

ARMAX model used, Equation 4.1, and the other converging to -10.5. The root locus gain

converges in a similar fashion, to 0.44×10 .-3
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Figure 5.5 Prediction Error for RLS System Identification

The parameter estimates shown in Figure 5.3, and also the poles, zeros and gain

illustrated in Figure 5.4, have a regular pattern of variation after the initial period of

convergence. These regular variations are due to changes in the dynamics of the robot and

specifically arise from the steps acting both with, and then, against gravity. These variations

are tracked by the RLS algorithm due to the forgetting factor which reduces the influence

of older data, allowing such time varying and nonlinear systems to be identified.

However, using a forgetting factor of 0.995 means that data that is 600 samples (or

11.8 seconds) old has a weighting of 5% of that of the current data [2.56]. This implies that

any changes in the dynamics of robot, such as those caused by steps in different directions,

will still have some significance within the parameter estimates some 10-12 seconds after

the change occurred. This explains why the parameter estimates do not converge to similar

values for subsequent steps in the same direction, since the parameter estimates are to some

extent averaging the changing dynamics over steps in both directions.

The difference between the estimated model output and the actual system output is

the a priori prediction error, �(k), defined by Equation 4.8. This is shown in Figure 5.5, and

indicates that the model output follows the actual system output closely. The mean of the

a priori prediction error is close to zero, implying that there is no bias within the parameter

estimates. The root mean square (RMS) of the a priori prediction error is another useful
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(5.1)

performance measure for the identification process, the smaller the error the better is the

estimation. For this particular system identification experiment the RMS a priori prediction

error is 1.72×10  V, neglecting the first three seconds of data since the estimates are-3

undergoing initial convergence.

5.3.1 Operational Issues for Practical System Identification

The regression vector, �, which holds past system input and output data, is usually

allowed to fill up before the identification algorithm is started. However, for this particular

system, it was found that the parameter estimates exhibited better convergence if the

regression vector was initialised using data from the previous sample only (cf. Equation

4.7) :-

The parameter estimates shown in Figure 5.3 were derived using this method of

initialisation.

The effect of these two different methods of initialisation on this particular system

is shown in Figure 5.6, which gives the a  parameter estimate for both cases (cf. a  in1 1

Figure 5.3). The two parameter estimates converge to different values and are also more

irregular when �(0) is fully filled. The other parameter estimates exhibit similar behaviour.

When the estimator is coupled with an appropriate pole placement controller, stability

problems have been observed when �(0) is fully filled, which results from the higher and

more erratic controller gains generated.

The effect of different forgetting factors, �, on the a  parameter estimate is shown1

in Figure 5.7. There is little difference between � = 0.995 (cf. Figure 5.3) and � = 0.99,

however with � = 0.95, the parameter estimate becomes erratic due to the increased

sensitivity to noise [2.57]. Similar effects are seen with the other parameter estimates.
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Figure 5.6 Effect of using Different �(0) on the a  Parameter Estimate1

Figure 5.7 Effect of using Different � on the a  Parameter Estimate1

The identification results shown in Figure 5.3 do not use a priori knowledge about

the system being identified, with the initial parameter estimates corresponding to a simple

integrator, Equation 4.21. The time taken for the parameters to converge can be reduced by

using a priori initial parameter estimates obtained from previous identification runs. Figure

5.8 shows the same parameters being identified as in Figure 5.3, but with �(0) equal to the

average of the parameter estimates in Figure 5.3 from 3 s to 18 s. The initial covariance

matrix, P(0), is set to I accordingly. The axis limits used in Figure 5.8 are the same as those

in Figure 5.3 to allow direct comparison of the plots. As expected the parameter estimates

are much smoother during the initial three seconds than those obtained without the use of

a priori parameter estimates. After this, the two sets of estimates follow similar trajectories.
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Figure 5.8 Effect of using a priori Parameter Estimates

5.3.2 Effect of Different Identification Algorithms

Many different forms of recursive least squares (RLS) algorithm exist, and three

particular types have been investigated in this study :-

     • Matrix Inversion Lemma (MIL-RLS) : this is the traditional recursive least squares

algorithm, and was presented in Section 4.2.2, Equations 4.8 to 4.11.

     • Bierman U-D Factorisation (BUD-RLS) : a numerically robust recursive least

squares algorithm, Appendix B, Equations B.2 to B.8. This prevents rounding errors

from affecting the parameter estimates, and also ensures that the covariance matrix

remains positive definite, which is a requirement for convergence.

     • Simplified Matrix Inversion Lemma (EASY-RLS) : this is identical to the MIL-RLS

but with only the diagonal elements of the covariance matrix, P(k), being updated,

thereby reducing the computational requirements, as proposed in [2.79].
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Identification Algorithm flops execution time (ms)

MIL-RLS 764 2.03

EASY-RLS 764 2.38

BUD-RLS 1082 3.57

MIL-RLS ('C' code equivalent) 871 31.68

EASY-RLS ('C' code equivalent) 211 10.60

BUD-RLS ('C' code equivalent) 180 10.32

Table 5.1 System Identification Computational Requirements

When operating as stand-alone algorithms, different identification methods can

produce slightly different results [2.82]. Here, the MIL-RLS and BUD-RLS estimates are

almost identical, both with RMS a priori prediction errors of 1.72×10  V. The estimates-3

from the EASY-RLS algorithm converge to slightly different values, giving an RMS

prediction error of 3.03×10  V. The difference in performance between these algorithms-3

is more marked when coupled with the self-tuning controller, as discussed in Section 5.5.2.

The relative computational effort required by each algorithm can be determined

using MATLAB's flops command, which measures the number of floating point operations

performed. The algorithms running under MATLAB have specifically been written to

exploit the vectorisation techniques available to increase their speed and simplicity.

However, these algorithms cannot be applied directly to the DSP which is programmed in

'C' code. Therefore Table 5.1 shows the number of floating point operations (flops) for the

three different algorithms using both the vectorised MATLAB code as well as the 'C' code

equivalent. The execution time for each algorithm is also given, which was determined by

averaging the time taken for 960 iterations of the algorithm on a 166 MHz Pentium PC. The

model structure used was the same as used previously, that is n  = 3, n  = 2 and n  = 1.a b d

Looking at the 'C' code equivalent algorithms first, the EASY-RLS clearly has a

much smaller computational requirement than the standard MIL-RLS algorithm. However,
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the BUD-RLS has the lowest requirement. This is at odds with [2.57] which states that

equally efficiently coded MIL-RLS and BUD-RLS algorithms will take approximately the

same number of computations. The execution times for the compiled 'C' code running on

the DSP vary in proportion to those values in Table 5.1, showing that assembler

optimisations are consistent across the three algorithms.

The MATLAB specific algorithms use more floating point operations than their 'C'

code equivalents, however the vectorised nature of these algorithms means that they do

execute significantly faster. It should also be noted that the BUD-RLS algorithm is slower

than both the MIL-RLS and EASY-RLS schemes. This arises since it cannot be vectorised

to the same degree as the other algorithms.

The number of estimated parameters, n , has a nonlinear influence on the number
�

of floating point operations. For both the BUD-RLS and EASY-RLS algorithms this is

approximately proportional to n , and for the MIL-RLS it is roughly proportional to n .
� �

2 3

The reason for these differences can be directly attributable to the 'C' code implementation

of each algorithm, and specifically the number of nested for-next loops present.

5.3.3 Effect of Different Model Orders

The model order and structure used in the above examples is based on the

linearisation of the underlying physical system discussed in Section 4.3. However, lower

order models may work just as well with the benefit of lower computational effort,

alternatively higher order models may offer improved accuracy. One way of determining

the most effective model order is to look at how the RMS a priori prediction error varies

with n , n  and n . This is shown in Figure 5.9 for models up to fifth order, n  = n  = 5, witha b d a b

Figures 5.9a and 5.9b corresponding to n  = 0 and n  = 1 respectively.d d

The various models all follow the actual system output closely, but it is clear from

Figure 5.9 that the higher order models provide better tracking of the system. This is as to
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Figure 5.9 Effect of Model Order on Prediction Error

be expected since the higher order terms allow higher order dynamics, and noise to a certain

extent, to be captured in the model and hence provide the marginal improvements shown.

Comparing Figures 5.9a and 5.9b, the inclusion of an offset term in the model, n  = 1,d

reduces the modelling error significantly. This justifies the argument in Section 4.3 for

including this term in the linearised manipulator model.

The relationship between model order and number of calculations has already been

discussed, and therefore there is an obvious trade-off between prediction error and

computational requirement. Consequently the work here uses model orders corresponding

to the underlying system (n  = 3, n  = 2 and n  = 1) and also those corresponding to self-a b d

tuning PI and PID controllers.

5.4 Off-line PID Tuning

Self-tuning controllers use the parameter estimates generated by the identification

algorithm to determine their gains so as to meet some predefined performance criterion.

Therefore, the gains are automatically adjusted to accommodate any changes in system

dynamics that arise from variations in the operating conditions. Another way in which the

parameter estimates can be used to design a controller is to determine the average controller

gains from a series of identification results. These values are then used in a fixed gain
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(5.2)

Figure 5.10 Estimated Proportional Gains for PI and PID Controllers

controller, which has the advantage of computational simplicity but cannot cope with

changes in dynamics. This procedure provides a simple means of tuning fixed gain

controllers, with the desired polynomial, t(z ), determining the system response (when-1

operating under typical conditions).

This procedure was followed using model orders of n  = 2, n  = 1, n  = 0,a b d

corresponding to a self-tuning PID controller, and n  = 1, n  = 1, n  = 0, matching a self-a b d

tuning PI controller, Appendix C.2. As in the previous work, the forearm rotate joint was

stepped between 210° and 170° with a period of 8 s, but the gains used were k  = 10.0 andp

k  = 10.0 and the experiment continued until t = 80 s. The system identification wasi

configured as described in Section 5.3, with � = 0.995, no prior knowledge of parameter

estimates assumed, and �(0) filled with data from the previous sample only (Equation 5.1).

The parameter estimates obtained from both model orders are then used to

determine the corresponding controller gains, as detailed in Appendix C.2, using Equations

C.7 and C.8. The desired polynomial was specified to give two poles at 0.95, so :-

Figure 5.10 shows the resulting proportional gains for both the PI and PID

controllers, with the integral and derivative gains having similar variations. It can be seen
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kp ki kd

PI controller 15.73 20.38 -

PID controller 46.63 61.15 6.71

Table 5.2 Controller Gains Obtained by System Identification

Figure 5.11 Response of Fixed Gain PI and PID Controllers

that the required controller gains vary during this simple movement, which is due to the

changes in system dynamics as discussed earlier. The fixed gain controller terms are

obtained by averaging the estimated gains between 20 s and 80 s, to neglect the period of

initial convergence, and are given in Table 5.2.

The response of both fixed gain PI and PID controllers using these gains for steps

in the forearm rotate joint are shown in Figures 5.11a and 5.11b respectively (cf. Figure

5.1). The desired response shown in these plots corresponds to that specified by the desired

polynomial of Equation 5.2. The joint angle attempts to follow the desired response in both

cases, with the PID controller providing better tracking. This is reflected in the RMS errors

between desired and actual joint angle over the 18 s period of this test, which for the PI

controller was 6.4° whereas the PID error was 2.9°.

The gains obtained for the PID controller are high, and place a high demand on the
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actuators since the controller output signal readily saturates at its limits. This is impractical

as servovalve wear and failure is greatly increased under these conditions. Therefore, the

fixed gain PI controller is used as the benchmark to which the subsequent self-tuning joint

controllers are compared.

5.5 SISO Self-tuning Pole Placement Joint Angle Control

This section discusses the operation and performance of self-tuning joint angle

controllers for a variety of different operating conditions, showing benefits over the fixed

gain controllers derived in the previous section. The operational issues of RLS system

identification explored in Section 5.3 will be investigated again to look at the consequence

of use within a self-tuning controller.

The self-tuning controller developed here operates on the forearm rotate joint

stepping from 210° to 170°, as used in the earlier system identification work. The initial

model order used corresponds to the physical system, with n  = 3, n  = 2 and n  = 1, and thea b d

Matrix Inversion Lemma RLS algorithm (MIL-RLS) is employed, with a forgetting factor,

� = 0.995. The initialisation of the RLS is as described previously; �(0) is assumed to be

an integrator, P(0) = 100I, and �(0) is partially filled with data from the previous sample.

The system identifier is started at 0 s, and the step from 210° to 170° in the forearm

rotate is executed at 12 s. Proportional gain control is used for the first 10 samples (0.196 s)

after the step is commanded, as this ensures that the self-tuning controller is well-behaved,

which is switched on at 12.2 s. This switching is facilitated by the use of incremental

controllers which allow bumpless transfer between different control strategies, as

mentioned in Section 4.2.3.

The response of the forearm rotate joint using this self-tuning controller is shown
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Figure 5.12 Response of Self-tuning Controller

Figure 5.13 Self-tuning Controller Output

in Figure 5.12, together with the desired response given by Equation 5.2 , where higher†

order terms in t(z ) are set to zero. It can be seen that the controlled joint angle follows the-1

desired response closely, with the RMS error between them being 0.59°, showing

significant improvement over the fixed gain controllers used in the previous section. The

controller output is shown in Figure 5.13.

The use of step changes in the reference generally results in large control signals,

which is potentially problematic for self-tuning controllers. However, step responses

provide a good means of quantifying controller performance. In practice smoother
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Figure 5.14 Response for Different Desired Polynomials

trajectories would be more appropriate, which are less demanding on the controllers being

used. Furthermore, when performing a task the robot may be motionless for long periods

of time, this may lead to problems due to lack of persistent excitation. The covariance

management techniques described in Section 4.2.4 can be used to alleviate this. For the

purpose of the experimentation in this thesis no covariance management is employed.

Figure 5.14 shows the response of the forearm rotate joint for a variety of different

desired polynomials, including an underdamped one, due to the specification of complex

conjugate poles. Again, the period of proportional only control can be clearly seen on the

plots as it is identical for each response. The joint follows the desired responses closely in

all four cases, but some degradation was observed for d) which was due to the desired

response requiring a slew rate faster than the manipulator could attain. Similarly, specifying

two poles at 0.75 proved too fast for the manipulator to achieve, with the controller output

saturating. These results do show the ease with which the designer can change the system

response through specifying appropriate pole locations.

5.5.1 Effect of Different Model Orders

Here, the effect of using different model orders in the self-tuning controller is

investigated, in terms of both controller performance and computational complexity of the
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Controller Type na nb nd RMS error(°)

Self-tuning PI (see
Appendix C.2)

1 1 0        1.122*

1 1 1        1.126*

Self-tuning PID (see
Appendix C.2)

2 1 0        1.233

2 1 1        1.119*

Self-tuning pole placement
based on physical model 3 2 1        0.594

Table 5.3 Self-tuning Controller Errors for Different Model Orders

resulting controller algorithm. The test conditions and operating procedures of the self-

tuning controller are the same as those used in the previous example. Table 5.3 gives the

RMS error between desired and actual responses for several different model orders, which

is calculated as previously detailed.

The results marked with an asterisk (*) in above table were obtained by starting the

self-tuning controller after 20 samples of proportional only control, rather than 10 samples

as used earlier. Though these results are complicated by these slightly different procedures

used, it is clear that the model representing the underlying physical system is the best.

Furthermore, there is little difference in performance between the self-tuning PI and PID

controllers.

The number of floating point operations required for the various controllers used

are given in Table 5.4. These figures were determined using MATLAB's flops command,

and applies to the 'C' code implementation of the controllers rather than the vectorised

MATLAB code, as described in Section 5.3.2. Clearly, the computational burden of a self-

tuning controller increases with model order, however, the number of computations

required by the controller is secondary when compared to that required by the identification

algorithm (cf. Section 5.3.2 for n  = 3, n  = 2, n  = 1).a b d

It should be noted that non-incremental self-tuning controllers were experimented



- 118 -

Controller Type na nb nd flops

Fixed Gain PI - - - 7

Fixed Gain PID - - - 12

Self-tuning PI 1 1 0 or 1 12

Self-tuning PID 2 1 0 or 1 19

Self-tuning 3 2 0 or 1 81

Table 5.4 Self-tuning Controller Computational Requirements

with for control of the forearm rotate joint, but the responses obtained did not follow the

desired response and quickly became unstable.

5.5.2 Effect of Different Identification Algorithms

The effect of using different system identification algorithms within the self-tuning

controller are now explored. The test conditions and operating procedures of the self-tuning

controller are the same as those used in the previous examples, with the model order used

being n  = 3, n  = 2 and n  = 1.a b d

The algorithms investigated are the MIL-RLS, BUD-RLS and EASY-RLS routines

discussed in Section 5.3.2. The tests are performed over an extended period since the

algorithms have implications in terms of numerical robustness, as well as dynamic

accuracy. Therefore, the forearm rotate joint is stepped between 210° and 170° with a

period of 8 s as before, but allowed to carry on until t = 98 s. The proportional only control,

used prior to starting the self-tuner, is used only during the first step, since the self-tuning

controller copes with subsequent step changes once it is has been initiated correctly.

The response of the forearm rotate joint under self-tuning control using these three

different identification algorithms is given in Figure 5.15, for the period t = 18 s to t = 98 s.

The MIL-RLS algorithm follows the desired response well, but does degrade at certain

times and large spikes are evident in the response. These spikes probably arise due to the
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Figure 5.15 Effect of Using Different Estimation Algorithms

covariance matrix becoming ill-conditioned. The BUD-RLS system follows the desired

response closely with no perturbations, showing improved robustness over the standard

RLS routine. Figure 5.15c shows the response when using the EASY-RLS algorithm and

the desired response is not followed closely, with some overshoot present. Table 5.5 gives

the RMS and peak errors between desired and actual responses for the period 18 s to 98 s,

and these reflect the previous discussion.

The long term accuracy is significantly better for the BUD-RLS system

identification, whereas the MIL-RLS follows the desired response well but the spurious

spikes demonstrate its shortcoming. As can be seem from Figure 5.15c the performance of

the EASY-RLS algorithm is poor, as it does not follow the desired polynomial.
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RLS Algorithm RMS Error (°) Peak Error (°)

MIL-RLS 4.625 33.115

BUD-RLS 2.314 11.090

EASY-RLS 10.067 28.703

Table 5.5 Controller Errors for Different RLS Algorithms

5.5.3 Effect of Different Operating Conditions

The results discussed in this section look at the ability of the self-tuning controller

to adapt to changing conditions. Several different operating conditions are tried, using both

fixed gain and self-tuning controllers to quantify the benefits of using these more advanced

schemes. The operation of the self-tuning controllers is the same as described in Section

5.5, specifically � = 0.995, t(z ) as given by Equation 5.2, �(0) assumed to be an integrator-1

(i.e. no a priori knowledge assumed), P(0) = 100I, �(0) is filled with data from one

previous sample, and the MIL-RLS algorithm is used.

Three different controllers are studied :-

     • the self-tuning pole placement controller introduced in Section 5.5, using a model

order of n  = 3, n  = 2 and n  = 1.a b d

     • a self-tuning PID controller with n  = 2, n  = 1 and n  = 0.a b d

     • the fixed gain PI controller using gains derived from off-line system identification,

as described in Section 5.4.

The different operating conditions on the forearm rotate joint are as follows :-

    a) step from 210° to 170°, as used in the initial work in Section 5.5.

    b) step from 210° to 170° with a 28 kg payload.
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    c) step from 170° to 210°, which acts in the direction of gravity as opposed to a) which

acts against gravity.

    d) step from 330° to 290°.

The response of the higher order self-tuning controller to these four conditions is

shown in Figure 5.16, where the responses for c) and d) have been shifted to allow

comparison on the same graph. These responses are virtually identical, all following the

desired response closely, indicating that the self-tuning controller is able to adapt to and

accommodate these changes in manipulator dynamics.

Figure 5.17 shows the results when using the self-tuning PID controller. Clearly

there is some degradation when compared to the higher order self-tuner, but the responses

are still reasonably close to the desired response. It should be noted that the controller used

for response c) uses a disturbance term (n  = 1), as the control was poor without one. Thed

effect of using a standard fixed gain PI controller is given in Figure 5.18, and the

degradation that arises from the changing manipulator dynamics is apparent. The response

under condition c) is the one that is significantly different from the rest, and is attributable

to the effects of gravity acting in a different direction in this case.

To quantify the performance of the three different controllers, the RMS error

between the actual and desired responses are calculated for each of the four conditions and

then averaged, giving :-

     • self-tuning controller using n  = 3, n  = 2 and n  = 1, has an average error of 0.88°.a b d

     • self-tuning PID controller has an average error of 1.29°.

     • fixed gain PI controller has an average error of 5.81°.

Further tests were carried out with the manipulator submerged, to determine if
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Figure 5.16 Response of Self-tuning Controller (n  = 3, n  = 2,a b
n  = 1) under Conditions a) to d)d

Figure 5.17 Response of Self-tuning PID Controller under
Conditions a) to d)

Figure 5.18 Response of Fixed Gain PI Controller under
Conditions a) to d)
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hydrodynamic effects would influence the controller response. However, little difference

was observed between operation in air and fully submerged operation [1.15]. This confirms

claims made in [1.2] that the hydrodynamic effects of typical subsea manipulators are

insignificant when the manipulator is moving at low velocities. This justifies the omission

of these hydrodynamic effects from the dynamic manipulator model developed in Chapter

Three.

The different conditions examined above embrace only a small range of the TA9s

capabilities, this being due to the limited scope of laboratory tests. However, improvements

in performance should be even more significant at the extremes of the TA9's operational

range, such as payload and operating temperature, that are experienced during actual

offshore operation.

5.5.4 Static Accuracy of Self-tuning Controllers

The previous work looked at the dynamic performance of the manipulator joint

when responding to a step change command. This section explores the effect of self-tuning

control on static accuracy.

With the forearm rotate joint held constant at 210°, the fixed gain PI controller used

previously gave an RMS error of 0.13° over a period of 30 s. The self-tuning controller

developed shows improvement on this, giving an RMS error of 0.098°.

This test was repeated for the elbow joint, since this exhibits poor static accuracy

due to limit cycles which arise from the combination of controller integral action and

mechanical stiction in the hydraulic piston [5.2]. Pistons are used on four of the six joints

of the TA9, but this effect is not observed on the forearm rotate joint as it uses a rotary vane

actuator. These limit cycles are shown in Figure 5.19a, which shows the elbow being held

constant at 40° under fixed gain PI control (using the devised gains of k  = 7.0 and k  = 2.0)p i

giving an RMS error of 0.69°. The response when self-tuning control is used is given in
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Figure 5.19 Static Response of Elbow Joint under Fixed Gain and Self-tuning Control

Figure 5.19b, and shows a significant improvement in reducing the limit cycles, resulting

in an RMS error of 0.14°.

An interesting effect is that these limit cycles grow in size as the robot heats up,

increasing considerably after about 30 minutes of operation, reducing the robots static

accuracy dramatically. Tests were carried out that eliminated heating of electrical

components from causing this effect. It was eventually deemed that the likely cause was a

reduction in bulk modulus of the hydraulic fluid used in the manipulator as its temperature

increases, Table 3.1. This makes the hydraulic fluid more compressible, making the

manipulator responses become more oscillatory [5.3]. The seals and other mechanical

components in the hydraulic system may also contribute to this degradation as they heat up.

The effect that gives rise to these limit cycles is not included in the dynamic model

developed in Chapter Three.

5.5.5 Effect of Coupling Between Joints

This section investigates the effect that coupling between joints has on the

performance of fixed gain and self-tuning control schemes. It has already been stated that

for these independent joint controllers, coupling is treated simply as a disturbance which
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must be rejected.

The elbow joint is used, and as in the previous section is held constant at 40°, but

now rapid movements in the neighbouring wrist joint are commanded to produce coupling.

These movements are a 40° peak-to-peak amplitude sinusoid with a frequency of 1.7 Hz,

and also a 40° amplitude square wave at 0.45 Hz.

The response of the elbow under fixed gain PI control actually shows some

improvement in static accuracy under these conditions of coupling, with smaller limit

cycles giving an RMS error of 0.51°. This reduction is attributable to the small forces

produced by the coupling, which decreases stiction at the joint as it is never perfectly

motionless.

The same test performed using self-tuning control also showed improvements, but

this is probably as a result of improved persistent excitation for the RLS estimation

algorithm. Small perturbations that were observed sporadically in joint angle in the purely

static case, are removed altogether as the coupling provides some, albeit small, excitation

to the joint. This yielded an RMS error of 0.15°. Similar effects were also observed when

these tests were repeated on the forearm rotate joint.

5.6 Summary

This chapter has presented a series of results that explored the operational aspects

of self-tuning controllers when applied to the independent joint control of a typical offshore

hydraulic manipulator. The benefits of using self-tuning controllers over conventional fixed

gain controllers have been shown, in terms of both dynamic and static accuracy.

First, the experimental setup was described, detailing how the digital controllers are

interfaced to the robot. The links with the higher level system, such as motion and task

planners, were also briefly described.

The operational aspects of practical system identification were then investigated.
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This encompassed different initialisation strategies, choice of forgetting factor, and the

effect of different model orders. The investigation demonstrated the suitability of using the

linear model structure determined from the underlying physical system, presented in

Chapter Four. Three alternative RLS algorithms were also tested, in terms of accuracy and

computational requirement.

The use of off-line system identification to obtain appropriate gains for fixed gain

PI and PID controllers was then discussed. The resulting fixed gain controllers were then

used as the benchmark for comparison with the self-tuning controllers.

The operation of self-tuning controllers was discussed, again looking at proper

initialisation, effects of different model orders and the different RLS algorithms. It was

found that for such practical applications the Bierman U-D Factorisation RLS algorithm

should be used to ensure good behaviour.

The performance of the self-tuning controllers was compared to the fixed gain

controllers, over a series of different conditions. This included investigating the effect of

different manipulator configurations and different payloads. Self-tuning control was also

examined in terms of static accuracy, ability to cope with coupling between joints and the

effects of hydrodynamics. These results demonstrated the ability of adaptive control

strategies to cope with unknown and changing conditions.
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Chapter 6

Fixed Gain Hybrid Position/Force
Control

6.1 Introduction

The introductory chapter of this thesis highlighted the need for the automation of

certain subsea intervention tasks, requiring both automatic and accurate position control of

underwater manipulators. Furthermore, control of the forces arising from interactions

between the robot and objects in the workplace greatly increases the capabilities and

efficiency of such systems. For example, tasks such as the mating of subsea connectors and

NDT weld inspection can be realised using automatic force control. A hybrid position/force

control scheme (discussed in Section 2.3.3) was chosen to facilitate such tasks, as this

strategy allows the simultaneous control of force and position in orthogonal directions in

the workspace.

Much of the previously reported work on hybrid position/force control has focused

on theoretical issues such as robustness and performance, with little consideration for the

practical aspects of the problem. Where experiments have been performed, they have

almost exclusively used specialised laboratory robots which have very different

characteristics to the manipulators used by the offshore industry. Consequently, if hybrid

position/force controllers are to be successfully employed offshore the limitations imposed

by hydraulic actuator technology and real-time implementation need to be addressed.

Therefore, the main objective of the work presented in this chapter is to establish

the technical feasibility of applying a practical hybrid position/force controller to a typical
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offshore manipulator. Fixed gain PID controllers are used to give a relatively simple

realisation, allowing practicalities to be addressed prior to the implementation of more

advanced controllers [1.5]. The limitations of this fixed gain system when operating under

unknown and changing conditions are examined. Furthermore, this system forms the

benchmark against which the self-tuning hybrid position/force controller developed in

Chapter Seven is compared. Although the fixed gain schemes have limitations, they still

significantly enhance the capabilities of these offshore manipulators.

This chapter starts by reintroducing the hybrid control scheme first discussed in

Section 2.3.3, defining the specific controller used and how it is implemented on the TA9

manipulator described in the previous chapter. Results from the experimental hybrid

position/force controller are then presented for a variety of different conditions to

investigate the performance of the system. The chapter concludes with a brief look at the

realisation of some typical offshore tasks using the developed fixed gain hybrid

position/force control scheme.

6.2 Practical Fixed Gain Hybrid Position/Force Control

The hybrid position/force controller implemented uses fixed gain PID controllers

within the generalised framework of Figure 2.3, and as presented in the example in the

definitive paper by Raibert and Craig [2.12]. Such fixed gain schemes do have limitations,

yet this form of hybrid position/force controller provides a simple realisation that

significantly enhances the capabilities of current offshore manipulators.

The force controller and position controller are realised as two separate controllers

which enables them to be designed independently to reflect these two different control

problems. The force control loop is realised as an explicit force controller (see Figure 2.2a),

with the Cartesian force errors being transformed into the joint space by the Jacobian

transpose, and then acted upon by PID controllers. The Cartesian position controller is
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Figure 6.1 Fixed Gain Hybrid Position/Force Control using Joint Space PID Controllers

similarly realised using PID controllers operating in the joint space, with the Cartesian

position errors being transformed into joint space errors by the inverse Jacobian, see Figure

2.1b. The relative merits and drawbacks of these particular force and position control

schemes have been discussed in Sections 2.3.3 and 2.3.2 respectively. The resulting hybrid

position/force controller is shown in Figure 6.1 (cf. Figure 2.3).

As described previously, the compliance selection matrix, S  = diag[s , s , .., s ],C 1 2 n

determines which directions in the constraint frame, {C}, are position controlled (s  = 0 )i

and which are under force control (s  = 1 ), where i � {1, 2, .., n}. Therefore, the errorsi

formed by the selection matrices, X  and F , are zero in the constrained andC C
es es

unconstrained directions respectively.

The position and force errors in the constraint frame, {C}, are both transformed into

the joint space of the manipulator using the Jacobian, J, which is a function of the currentC

joint angles and manipulator link lengths. By definition the Jacobian relates the joint angle

velocities to the Cartesian end-effector velocities, as specified by Equation 3.3. This

relationship is linearised and inverted to map small Cartesian position errors, X , to jointC
es

angle errors, �  :-es
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(6.1)

(6.2)

(6.3)

Similarly, the force errors, F , are transformed to joint torque errors, � , by theC
es es

Jacobian transpose (Equation 3.4) which appears in the hybrid control scheme as :-

These errors in the joint space are then acted upon by independent PID controllers,

with n controllers for the position errors and n for the force errors. The outputs from each

position and force controller for each joint are then summed and applied to the appropriate

actuator. Consequently each actuator contributes to both the position and force responses,

and it is this that leads to coupling between the two control loops.

Two further transformations are shown in Figure 6.1; the forward kinematics, given

by Equation 3.1, and a force transformation that converts forces measured in the sensor

frame, F, to the constraint frame, F. The generalised transformation of forces and torquesS C

from sensor frame to constraint frame, is given by [2.1] :-

where  is the rotation matrix that describes the rotation of {S} relative to {C} and PC
SORG

is the position vector which locates the origin of {S}, usually located near the end-effector

of the manipulator, relative to {C}.

6.3 Hybrid Position/Force Control Applied to the Restricted TA9

The fixed gain PID hybrid position/force controller described above is applied to

the right-handed restricted TA9 manipulator, described in Section 3.3 and shown in Figure

3.2, which yields a two DOF manipulator acting in an horizontal plane. This enabled the



 This transformation is specified within the ATI transducer controller in terms of XYZ Euler Angles which†

determines the specific order of rotations used to define the transformation. If the correct order is not observed then the
transformation will be incorrectly specified. The ATI transducer controller manual [6.1] gives details of how to configure
this particular transformation and also the general operating procedures. The specific command used within the ATI
transducer controller is given in Appendix A.4.
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controllers to be developed and practical problems to be addressed without undue

complexity associated with a full six DOF system. This restricted configuration is realised

on the TA9 by holding four of its joints at constant angles. A mechanical limit on the wrist

joint introduces a third, albeit fixed, joint angle, � , into the kinematic analysis as discussed3

in Section 3.3.

6.3.1 Coordinate Systems and Transformations Used

The forward kinematics and Jacobian of this particular arrangement have already

been defined by Equations 3.1 and 3.2 respectively. The constraint frame, {C}, was

specified to coincide with the base frame of the manipulator, as shown in Figure 3.2. The

location of the constraining surface is also shown in Figure 3.2 and is parallel to the y-axis

of {C}. The selection matrix is therefore defined as S  = diag[1, 0] for this particularC

arrangement.

The six axis force/torque sensor (ATI Model 150/600) is mounted between the claw

rotate joint and the wrist joint. The forces and torques measured by this sensor are defined

in the sensor frame, {S}, which is located 257 mm from the tip of the end-effector. The

transformation of these forces into the constraint frame is accomplished in two stages.

Firstly, the transformation from {S} to frame {4} is performed within the ATI transducer

controller as it is independent of the manipulator's joint angles. The transformation uses the

general expression of Equation 6.3 since both rotations and translations are required to

move from {S} to {4} .†

The second transformation, from frame {4} to {C}, is performed by the hybrid

position/force controller software since it requires the current joint angles. This
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(6.4)

transformation can be simplified since no torques are involved in this 2 DOF configuration

and Equation 6.3 becomes :-

The expressions for the kinematics, Jacobian and force transformations can be

reformulated to exploit the fact that �  is constant and reduces the number of trigonometric3

calculations which are computationally intensive for the DSP. Further, due to the sparse

nature of the selection matrix only certain expressions common to both the Jacobian and

the inverse Jacobian need to be calculated, further minimising the number of calculations.

Obviously these simplifications are specific to this particular implementation and particular

constraint frame. If the constraint frame is altered then appropriate modifications to the

software would be needed.

6.3.2 Experimental Setup

The experimental robot and ancillary hardware have already been described in

Section 5.2. For the purposes of hybrid position/force control the arrangement was modified

slightly to incorporate the six axis force/torque sensor and constraining environment.

The force/torque sensor has been briefly described in Section 3.2. The analogue

sensor outputs are interfaced to the DSP (which runs the control algorithm) via the same

12 bit ADCs that are used for the joint angle measurements. The architecture of the

resulting multi-loop controller implementation is described in the following section.

The constraining surface used in the experiments was a vertically mounted 5 mm

thick steel plate, which can be seen in Figure 6.2. This plate was secured at its lower edge

to a rigid beam that ran parallel to the y-axis at a distance of approximately 1060 mmC

along the negative x-axis. The stiffness of this test environment could be altered by usingC
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Figure 6.2  TA9 Manipulator Performing Hybrid Position/Force Task

plates of different thicknesses or materials, or by commanding the manipulator to contact

the plate at different distances from the fixed edge. Further, this stiffness could be

determined from the Young's modulus and dimensions of the plate. It should be

remembered that with a hydraulic robot there is little chance of damaging the manipulator

using such stiff environments since it has some inherent compliance due to the

compressibility of the hydraulic fluid used in the actuators.

The manipulator's end-effector was modified by adding a ball transfer unit, which

can also be seen in Figure 6.2, allowing the end-effector to slide in any direction and

minimising friction present during sliding contacts. Any friction that is present would

appear as a disturbance in the control system and consequently degrade performance.

Sensors or tools being deployed using these schemes should therefore be designed to

minimise friction whilst sliding.

One constraint upon the use of this 'tool' is that it cannot accommodate contact

angles of greater than 20° from the normal of the surface. This constraint is typical of the

sensors and tools that are deployed during offshore tasks, for example NDT sensors

generally have to be held perpendicular to the weld being examined. However, it should be
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noted that this constraint is not a function of the hybrid position/force control system

developed, which can accommodate any contact angle subject to proper controller tuning.

Finally, as the ball transfer unit is not marinised these tests were performed out of water.

However, the immersion of the manipulator in water would not have a significant effect

upon the system's performance as hydrodynamic effects are not pronounced at the low

velocities used here [1.2].

The weight of the claw and tool is sensed by the force/torque sensor and this effect

must be removed from the sensor data before being used in the control algorithm. This is

achieved by zeroing the sensor reading just prior to making contact, the procedure for

which is described in Section 6.3.4. The effect of the claw's weight on the sensor

measurements varies with its orientation within the gravitational field and this should be

taken into account as the robot traverses the workspace. However, since this particular

experimental setup is confined to a horizontal plane no such compensation is required.

It should also be noted that the sensor measures the reaction force rather than the

force that the manipulator is applying to the environment, hence the force measurements

need to be inverted.

One peculiarity of the TA9 manipulator is that the elbow actuator drives that joint

in the opposite direction to that defined by the kinematics, where conventions specify that

a positive input signal produces an increase in joint angle. This was accommodated by

inverting the control signal to the elbow actuator within the hybrid controller. This

compensation was not required for the SISO joint angle controllers since those controllers

use the raw potentiometer voltages, whose directions followed the conventions.

The implemented hybrid position/force controller, incorporating the modifications

specific to this configuration described above, is shown in Figure 6.3.
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Figure 6.3 Experimental 2 DOF Fixed Gain Hybrid Position/Force Control

6.3.3 Controller Implementation

The realisation of the MIMO hybrid position/force controller using the single DSP

will now be discussed. Three of the seven actuators of the TA9 manipulator (the wrist, claw

rotate and claw open/close) are driven open loop, with a constant voltage being used to

maintain them at their end-stops. Two of the four remaining joints (the shoulder up/down

and forearm rotate) are controlled by SISO joint angle controllers that simply maintain

these joint angles constant during the experiments. The remaining two joints (the shoulder

slew and elbow) are used in the hybrid position/force control scheme given in Figure 6.3.

This system was realised on the DSP using the sequential structure described in

Section 5.2, where the control for each joint is performed successively. The two SISO joint

angle controllers were implemented as described previously. However, the two joints under

hybrid control each consisted of two independent PID controllers, one for the force loop

and one for the position loop. The outputs from each were then summed to produce the
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(6.5)

(6.6)

(6.7)

actuator drive signal. An additional 'read-cycle' was required during which the force sensor

data was acquired, but no control action taken. Thus five cycles were performed before the

sequence was repeated, and therefore to realise the sample rate of 50 Hz an update rate of

4 ms for each successive cycle was required.

The calculations for the Jacobian, kinematics and transformations were performed

during the control period that the elbow joint angle is read. Therefore the shoulder slew

angle used in the calculations is not exactly coincident with the elbow angle due to the

sequential structure of the controller, but this has a negligible effect.

The fixed gain PID controllers used are implemented in the incremental form (see

Equation C.3) as this allows a smooth transition from one mode of control to another. This

is especially important since it would be difficult to start the manipulator directly under the

hybrid position/force control scheme. The PID controllers used in the hybrid controller have

the form :-

where � , �  = transformed position and force errors (Equations 6.1 and 6.2)es es

�  = sample periods

�i (k)  = incremental servovalve current from position loop at sample kp

�i (k)  = incremental servovalve current from force loop at sample kf

i(k)  = summed servovalve current at sample instant k

K , K  = proportional gains for position and force loops respectivelyPp Pf

K , K  = integral gains for position and force loops respectivelyIp If
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K , K  = derivative gains for position and force loops respectivelyDp Df

The controller output voltages are converted into servovalve currents by the signal

conditioning circuitry. These currents produce the required changes in the joint angles and

joint torques to give the desired Cartesian positions and forces. Since the joint torques

cannot be explicitly commanded, the static nonlinear relationship between input current and

joint torque, shown in Figure 3.6, augments the nonlinear robot dynamics presented in

Chapter Three. However, under normal conditions the manipulator operates in the steep

linear region of these characteristics and it is only when the commanded force is close to

the limit of the robot's capability that this relationship becomes nonlinear. Consequently the

PID controllers are tuned to operate in the linear part of these characteristics and if higher

torques are commanded then degradation of the response will occur.

The fixed gain PID controllers were tuned manually to give fast and smooth

responses to step inputs in both Cartesian position and force. The hybrid position/force

controller structure allows independent gains to be used for both the position and force

controlled directions, allowing the different dynamics of each to be accommodated.

6.3.4 Operation of Experimental Hybrid Position/Force Controller

The controllers have been developed to allow smooth transitions between

unconstrained (independent SISO joint angle control) and constrained (MIMO hybrid

position/force control) manipulator motions. This was achieved with the use of incremental

PID controllers which provides bumpless transfer between controllers.

A hybrid task is started by first bringing the end-effector of the manipulator close

to the initial contact point using the unconstrained joint angle controllers. The hybrid

controller is then started using a keypress or command from a higher level planning system.

This automatically zeroes the force/torque sensor readings to remove the effect of the claw's
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weight. Then a force is commanded in the direction of the surface to be contacted, causing

the end-effector to move towards the surface until contact is made and the desired force

attained. The hybrid position/force control experiments are started once any transients due

to the impact have decayed and a stable contact established, which is typically within one

second.

The desired Cartesian positions and forces can be adjusted by simple keypresses,

or can follow a pre-programmed sequence of events. Higher level planning systems can also

be integrated with the hybrid scheme, with the desired positions and forces being received

via TCP/IP communication. The forces, joint angles and control signals for each controller

are recorded and stored at every sample instant by the PC which hosts the DSP. This

enables the controller performance for the various experiments to be analysed off-line.

Access to the trajectory interpolation and teach and play facility, as described in Section

5.2, are also available for use in the hybrid position/force controller.

6.3.5 Development Process for the Hybrid Position/Force Controller

A discussion on the process followed during the development of the hybrid

position/force controller is considered to be useful at this point. It shows the evolution of

the scheme from a simple single degree of freedom scheme, such as those presented in the

previous chapter, through separate Cartesian force and position control schemes, which

were then combined to give the final hybrid position/force control scheme.

This development process commenced with an initial undertaking to close a single

force control loop around one of the TA9's joints. This was first attempted with the claw

rotate joint, controlling the torque exerted on a fixed bar gripped in the jaws of the

manipulator. Open loop tests were initially carried out to investigate how the torque exerted

varied with applied control voltage. The control loop was then closed with a PID controller

and experiments were conducted to investigate the effect of the three controller terms. This
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demonstrated that, as would be expected, an integral term was required to removed steady

state errors in the torque, and that too much integral gain destabilised the control loop.

Derivative gain did help to speed up the response slightly, however due to the noisy nature

of the force signal it was deemed better to omit derivative action.

The next stage in the development of the hybrid scheme was the realisation of a two

DOF fixed gain static force controller. This essentially involved the implementation of the

upper half of Figure 6.3 and allowed the following to be accomplished :-

    • implementation of the MIMO control system within the framework described in

Section 6.3.3 and integration with the force sensor and acquisition hardware.

    • validation of the coordinate frames, transformations and Jacobian used.

    • development of the operational procedure for starting these force control schemes,

as described previously.

    • tuning of the force control loop parameters to give a fast response with minimal

overshoot. The resulting gains were K  = 0.002, K  = 0.0004 and K  = 0, andPf If Df

demonstrated that integral gain was required to remove steady state error.

A free space Cartesian position controller was then developed, corresponding to the

lower half of Figure 6.3, which allowed the following to be achieved :-

    • implementation of the MIMO control system within the same framework as the two

DOF static force controller.

    • validation of the controller calculations and operational procedures.

    • appropriate controller gains were determined to be K  = 20, K  = 1.5 and K  = 0Pp Ip Dp

in the locality of x = -900 mm and y = 900 mm. These gave a fast response withC C

minimal overshoot and an acceptable level of coupling between the two orthogonal
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directions. It was observed that too much integral action caused excessive overshoot

and too little resulted in long settling times.

    • validation of forward kinematics through physical measurement of the end-effector

location as the manipulator is commanded to move specific distances.

    • variation of controller response as the manipulator moves throughout its workspace,

away from the operating point at which its controllers were tuned.

Once these two control schemes had been proven separately, it was then simply a

case of combining them, together with the appropriate selection matrices, to form the hybrid

force/position controller of Figure 6.3. The tuned controllers derived for the independent

force and position schemes worked well with an acceptable level of coupling (as shown in

the next section) and did not require any re-tuning.

A further set of experiments carried out were open loop force control tests on the

shoulder slew joint within the framework of the two DOF fixed gain static force control

scheme. These results were used to determine the constant of proportionality of leakage

across the hydraulic piston (k ) used in the simulation model, as described in Sectionleak

3.4.2. The open loop response was also used to validate the response of the simulation

model. This is described in more detail in Section 7.3.1.

6.4 Experimental Hybrid Position/Force Control Results

This section presents the results of the hybrid position/force controller described in

the previous section. A simple task, encompassing both force and position responses, was

used to demonstrate the hybrid position/force control.

The hybrid position/force controller used those gains determined from the separate

Cartesian force and position controllers, namely K  = 0.002, K  = 0.0004 and K  = 0 forPf If Df

the force loops and K  = 20, K  = 1.5 and K  = 0 for the position loops. Re-tuning of thePp Ip Dp
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PID gains under the hybrid scheme was attempted, however the aforementioned gains

proved to be optimum for the nominal operating conditions.

Any deviation from these nominal conditions will result in a degradation of the

control. To demonstrate this the basic task was repeated for various operating conditions,

including changes in contact position in the manipulator workspace and changes in the level

of applied force. The previous chapter demonstrated that significant variations in the

dynamic response of the robot occurs when it moves either with or against gravity. This

effect could not be examined here since the manipulator is confined to the horizontal plane.

Consequently, if such a scheme is extended to a full six DOF system wider variations in

robot dynamics would be observed. The same basic task was also repeated to investigate

the effect of different trajectories for the reference signals.

All Cartesian force and position responses presented in the following sections are

defined in the constraint frame, {C}, unless otherwise specified. Furthermore, the sample

rate used within the controllers is 50 Hz, again unless otherwise stated.

6.4.1 Experimental Tests Performed

The basic task used in these experiments consisted of first bringing the end-effector

close (within 2 cm) to the environment, located at x = -1063 mm as shown in Figure 3.2.C

The hybrid control scheme was then started and a desired force commanded in the direction

of the environment. This caused the manipulator to come into contact with the environment

and exert the desired force. Then 10 seconds after the hybrid scheme was started, the

desired force was increased by 50 N. A further 10 seconds later the position of the

end-effector was commanded to move 100 mm in the negative y direction. AlthoughC

simple, this task does encompass both the force and position responses.

The data from each control loop was captured at the sample rate (50 Hz) and stored

by the PC for off-line analysis. The performance of each controller was quantified using the
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following measures :-

    • the RMS position error during the time 5 s to the end of the experiment (32 s). The

first five seconds were not used since the end-effector contact was being

established.

    • the RMS force error during the time 5 s to 20 s. This period only includes the step

in desired force, as the effect of the position step on the force control is more

effectively measured by the peak-to-peak force error.

    • the peak-to-peak force error in force during the time 20 s to 25 s. This quantifies the

disturbance on the force control resulting from the step in desired position.

6.4.2 Principal Results at Nominal Conditions

The experimental results presented in this section are for the operating conditions

for which the PID controllers were tuned. Figure 6.4 shows the force and position responses

for the full sequence of the task and Figure 6.5 shows the responses in the orthogonal, and

hence uncontrolled directions. The corresponding control signals are shown in Figure 6.6.

Prior to the start of the task the end-effector of the manipulator is positioned close

to the constraining environment using independent joint angle control. Figure 6.5 shows

that at the start of the task, t = 0 s, the end-effector is about 1 cm away from the plate

( x = -1063 mm).C

The transition from independent joint angle control to hybrid position/force control

is made at t = 1 s, this being indicated by the measured forces being zeroed to remove

sensor offsets due to the weight of the claw and tool. At the same instant the desired

y-position is set to the current y-position, y = 870 mm. At t = 2 s the desired force is setC

to F  = -100 N, as shown in Figure 6.4, and this causes the end-effector to move towardsC
xd

the environment, shown by the plot of x in Figure 6.5. Contact is made at t = 3 s, whereC
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Figure 6.4 Hybrid Position/Force Control Results at Nominal Conditions

Figure 6.5 Orthogonal Position and Force Measurements
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x attains a value of -1063 mm corresponding to the location of the constraining surface.C

The transition from free space motion to constrained motion is made and the force stabilises

to the commanded value of -100 N by t = 4 s. The size of this initial commanded force

determines the speed at which the manipulator approaches the environment, which in turn

governs the size and duration of the impact. In all of the experiments carried out care was

taken to allow a stable initial contact to be established prior to the experiment commencing.

The y-position, which deviates slightly during the contact phase, is controlled to the

previously defined desired position during this time.

The force reference is stepped to -150 N at t = 12 s, and then the desired y-position

is decreased by 100 mm at t = 22 s. The experiment is stopped at t = 32 s. The responses

of both the position and force are good, being both fast and well damped.

From these results it is clear that the step in the commanded force has an

insignificant effect on the position control, however the position step degrades the force

control significantly. Indeed the larger the position step the bigger is the disturbance on the

force control loop. This implies that small and/or slow changes in position should be

employed to minimise these disturbances. This idea is examined in Section 6.4.4.

The control signals, shown in Figure 6.6, indicate that the effort needed for the

increase in force from 100 N to 150 N is small, whereas the motion of the manipulator

requires much more effort. It is this increased effort during the movement phase of the task

that creates the large disturbance in the force control. The performance measures for the

controller response at these nominal conditions are :-

RMS position error, from 5 s to 32 s = 7.743 mm

RMS force error, from 5 s to 20 s = 4.047 N

peak-to-peak force error, from 20 s to 25 s = 214.7 N



0 5 10 15 20 25 30

2

3

4

5

Sl
ew

 C
on

tr
ol

 (
V

)

0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Time (s)

E
lb

ow
 C

on
tr

ol
 (

V
)

- 145 -

Figure 6.6 Control Signals for Hybrid Position/Force Control Task

6.4.3 Effect of Different Contact Positions

The same task was repeated for different points of contact along the x = -1063 mmC

axis, the specific points being y = 462 mm, 645 mm and 1015 mm, representing a goodC

spread though the workspace of the manipulator. The RMS errors in both position and force

for these locations and the nominal result ( y = 870 mm) are plotted in Figure 6.7.C

As the contact position changes, the variation in the response of the position

controllers is minimal, as shown by Figure 6.7a. A more significant variation with respect

to contact position can be seen in the RMS force error of Figure 6.7b. Here it is evident that

the PID controllers tuned for the contact at 870 mm degrade as the contact is moved away

from this point. Similar degradation away from the nominal point is also observed in the

third performance measure, the disturbance in the force during the motion phase of the task.

The above differences in how the force and position loops degrade with respect to
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Figure 6.7 RMS Position and Force Errors for Different Contact Positions

Figure 6.8 Elements of the J (�) Matrix T

the contact position arises from how the Jacobian varies throughout the manipulator's

workspace. Figures 6.8 and 6.9 show how the elements of the J (�) and J (�) matrices vary T  -1

with respect to the joint angles �  and � . The elements of the J (�) matrix, used in the1 2
 T

force loop change significantly between the different configurations used, whilst the

elements of the J (�) matrix, used in the position loop, remain relatively constant. -1
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Figure 6.9 Elements of the J (�) Matrix-1

Figure 6.10 Variation of Position Control Loop Response for 2 DOF Cartesian Controller
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Variations in the position response would be observed at those points in the

workspace where there is significant variation in the elements of J (�), that is for �  < 20� -1
2

which is when the manipulator is close to full extension. Experimental constraints

prevented these regions being explored with the fixed gain hybrid position/force control

scheme. Nevertheless, such variations in the position response were observed with the two

DOF Cartesian free space position control scheme as the manipulator approaches the edge

of its workspace and becomes fully extended. These variations, shown in Figure 6.10,

would equally apply to a hybrid position/force controller, and illustrate the main limitation

of fixed gain controllers whose gains can only be tuned for one point in the workspace.

6.4.4 Effect of Using a Modified Position Reference Trajectory

One of the limitations of this hybrid controller is the large disturbances in the force

control loop when a step change in the position is commanded. The results presented in this

section show the effect of using a smoother position reference trajectory to reduce the force

disturbances. Figure 6.11 shows the effect of a ramped position reference, where the

position reference took 2 seconds to achieve the 100 mm motion. The reduction in

disturbance on the force is apparent from the plots.

The performance measures for these are given below, and when compared to those

presented in Section 6.4.2 clearly show the benefits of using such a ramped position

reference. An additional benefit is that the control signals are smaller and hence place lower

demands on the actuators of the robot.

RMS position error, from 5 s to 32 s = 3.768 mm

RMS force error, from 5 s to 20 s = 7.777 N

peak-to-peak force error, from 20 s to 25 s = 62.1 N
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Figure 6.11 Hybrid Position/Force Control Results with Ramped Position Reference

It was observed that as the duration of the ramp is increased the force disturbances

decrease as expected. A further experiment was carried out using a sixth-order polynomial

to create a continuously differentiable function for the desired position trajectory (i.e. with

smooth velocity and acceleration profiles) [5.1]. This did not result in significant

improvement in performance of the system compared to the first-order case. The effect of

using smoothed force reference trajectories was not investigated as the position loop does

not suffer from disturbances from step changes in the force.

It should be noted that in any practical implementation of the hybrid position/force

controller the position references employed should be ramped rather than stepped.

6.4.5 Effect of Different Levels of Commanded Force

To determine if the system response varied with respect to the size of applied force,
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the task was repeated with the initial commanded force being varied between -50 N and

-250 N. The size of the force step remained at 50 N.

Any changes in system response proved difficult to measure since the variations due

to these changing operating conditions are small compared to the repeatability of the

experiments. Some general trends can be observed however; the RMS force error during

the step in commanded force increases with increasing initial commanded force, whilst the

peak-to-peak disturbance in the force during the motion phase of the task decreases.

With the range of forces used, the manipulator is operating in a linear region of its

torque/current characteristics (Figure 3.6). However, the use of much larger forces, causing

the robot to operate in the nonlinear portion of the characteristics, could not be tested due

to saturation of the force/torque sensor.

6.4.6 Effect of Different Sampling Rates

The results presented above use a sample rate of 50 Hz and this section describes

some brief observations when different sample rates are used. At the higher sample rate of

100 Hz the response of the system was similar to that for the default case. However, the

response of the force control loop degraded at sample rates of 25 Hz and 16 Hz (the lowest

sample rate possible due to hardware timer limitations) with significant deviation from the

reference being observed. No such degradation was observed in the response of the position

loop at these lower sample rates.

The above findings justify the selection of 50 Hz as the sample rate used within the

hybrid position/force controller.

6.5 Practical Manipulation Tasks

The fixed gain hybrid position/force controllers described in this chapter can be

used to realise many different practical intervention tasks. For example, NDT inspection
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Figure 6.12  Automated Insertion of a Subsea Connector

of a weld on a subsea structure would require the implementation of a full six DOF hybrid

position/force control scheme. This would use the same basic principles as the system

developed here, but with the extension that curved constraining surfaces and operation

outside the horizontal plane would need to be accommodated.

Other tasks that can be realised using these force and position control schemes

include automatic insertions, guarded moves and automatic grasp alignment. These three

particular behaviours have been implemented on the TA9 using the controller structures

developed in this chapter and they will now be described in detail.

The specific task of mating a typical underwater connector and socket, shown in

Figure 6.12, was chosen to demonstrate the extent to which this form of automated force

control could assist the human operator. Under teleoperation these mating tasks are

problematic as there is insufficient positional accuracy to allow the parts to be aligned

precisely and jamming frequently occurs.

Manual insertions of a typical underwater connector and socket were carried out

using master-slave teleoperation to determine the level of forces generated during an

insertion [1.4]. The forces and torques generated were large as any slight change in the
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Figure 6.13  Forces and Torques During a Teleoperated Insertion

position reference from the master arm caused large forces to be developed. Figure 6.13

shows the forces and torques measured during a typical teleoperated insertion.

The particular insertion task examined here is confined to a horizontal plane as in

the case of the hybrid position/force controllers described previously. However, an

additional degree of freedom (the wrist joint) is required to control the torque at the tip of

the connector, � . This results in a three DOF system, compared to the two DOF hybridzd

position/force controller described previously. Manual teleoperated insertions were

performed using three DOF control from the master arm to demonstrate that it was

physically possible to insert the connector when restricting the TA9 movements to just three

joints.

The automatic insertion scheme developed here, shown in Figure 6.14, has distinct

position and force controllers. Position control is used to bring the connector, held by the

manipulator, close to and in approximate alignment with the socket. This positioning can

be realised through the operator or some higher level task/motion planning system [1.4].

Once close to the socket the manipulator is switched from position control to force control
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Figure 6.14  Controller Structure for Insertion Task

so that the insertion can then commence. The use of incremental PID controllers within this

structure ensures that this transition is smooth with minimal transient demands on the

actuators.

The insertion is realised by commanding a force, F  = 600 N, in the direction of thexd

socket which pushes the connector into the socket. Although large, a step change of 600 N

is well within the capability of the robot and is necessary to overcome the latching/locking

mechanisms within this typical subsea connector. The reference values for the remaining

controlled directions are set to zero, F  = 0 and �  = 0, making the robot activelyyd zd

compliant in these directions. This compliance corrects for any misalignment between the

two parts and prevents them from jamming. As the connector is being pushed into the

socket the manipulator can be physically seen to be adjusting to the correct alignment [6.2].

The force and torque responses during a typical automatic insertion are shown in

Figure 6.15. The latching mechanism within the subsea connector and socket caused

considerable disturbances during the insertion which are evident from the responses shown.

However, the automatic control scheme is able to reliably perform the mating task despite
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Figure 6.15  Forces and Torques During an Automatic Insertion

these large disturbances. When compared to manual insertions this automatic system

improves the reliability of mating and also reduces the possibility of damage to the

connector, socket and manipulator.

It should be noted that this task could also have been realised using a hybrid

position/force scheme, but the simple division between position and force controlled

phases, shown in Figure 6.14, proved adequate for this task.

Guarded moves and automatic grasp alignment can be implemented using similar

techniques to that used for the automatic insertion. Guarded moves are a means of reducing

the effect of unexpected collisions between the manipulator and its workspace. This is

achieved by continually monitoring the end-effector forces during unconstrained motions.

If the forces exceed a predefined value (indicating a contact) a force controller is invoked

that acts to quickly reduce the contact force to a safe level. This behaviour can be used to

improve the safety of subsea teleoperated robots as the workspace is often poorly known.

Similarly, automatic grasp alignment is achieved using the forces and torques

generated by any misalignment between the robot and an object that it is attempting to
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grasp. These forces and torques can be minimised by a force controller which has the action

of automatically bringing the robot gripper into alignment with the object. This capability

has been used to automate the grasping of connector handles and valves [6.2] and can

significantly reduce the incidence of breakages since the forces exerted by the robot are now

automatically controlled.

These automatic force control schemes can be of great benefit to the operators of

robot manipulators, providing such systems with enhanced operational capabilities. Many

low level atomic actions such as "touch", "tighten", "align", "slide" and "insert" can be

implemented within this framework by a specific set of force, torque and position

references. These atomic actions could then be used by operators to perform tasks and

hence reduce the time and effort required and improve the reliability of operations. These

commands could also form the primitive behaviours required by high level task planning

software to realise complex behaviours autonomously.

6.6 Summary

This chapter has demonstrated that it is possible to obtain good results from a fixed

gain hybrid position/force control scheme implemented on an industrial hydraulically

actuated manipulator. These highly satisfactory practical results were achieved despite the

inherent problems associated with the TA9 manipulator, including :-

    • the joint angles used in the position control loop are obtained from noisy and low

accuracy analogue potentiometers.

    • ideally the joint angle velocities should be used, but such instrumentation is not

available on this industrial manipulator.

    • there is considerable stiction present in the hydraulic pistons and joints which

degrades control performance.
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Furthermore, the manipulator is a nonlinear system, and although the dynamic

relationship between servovalve input currents and joint angles and joint torques has been

modelled in Chapter Three, it is complex and there is coupling between joints. The use of

independent PID controllers assumes a decoupled and linearised plant, nevertheless it has

been shown that such a scheme still performs well when controlling this nonlinear and

coupled system.

The fixed gain PID controllers can only be tuned for one particular set of operating

conditions. Changes in these operating conditions are often unknown and/or unpredictable

and have been shown to degrade the performance of the fixed gain controllers. If the robot

is required to work over a wide range of operating conditions then the controllers need to

be de-tuned and a poor control response accepted. Alternatively, an advanced control

strategy could be employed to cope with these variations. In the next chapter of this thesis

a self-tuning hybrid position/force controller will be developed that can automatically adapt

to unknown and changing operating conditions.

Nevertheless, this chapter has demonstrated that even fixed gain hybrid

position/force control can significantly widen the range of tasks that can be carried out by

typical offshore manipulators. Task such as automatic insertions and grasp alignment can

be realised in the framework of hybrid position/force control. This can therefore provide

a suite of low level atomic actions that can be accessed by the operator or a high level

planning system. Such enhanced capabilities represent a significant step forward for

offshore teleoperated manipulation systems.
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Chapter 7

Self-tuning Hybrid Position/Force
Control

7.1 Introduction

The preceding chapter showed that the fixed gain hybrid position/force controller

developed for the TA9 manipulator performed well when operating under those conditions

that it was tuned for. However, the controller's performance degraded away from these

nominal conditions. This degradation became particularly severe as the manipulator

approached the limits of its operation, in terms of workspace, payload and applied force.

Furthermore, these manipulators operate in environments where the nominal conditions are

not well known. These difficulties highlight the need for a control strategy that can adapt

to both changing and unknown conditions.

Chapter Five demonstrated that a SISO self-tuning controller can successfully

provide performance improvements over a fixed gain controller for joint angle control. In

this chapter a similar, but multivariable, enhancement is made to the hybrid position/force

control scheme so that it can better accommodate unknown and changing operating

conditions.

This chapter opens with an extension of the SISO self-tuning controller to the

multivariable hybrid position/force control problem. The performance of the MIMO self-

tuning control scheme is investigated through simulation, using the model of the TA9

manipulator developed in Chapter Three. Results are then presented that illustrate the

controller's ability to cope with a wide range of unknown and changing operating
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conditions, including different environmental stiffnesses and different positions in the

workspace. These are compared with similar results for a fixed gain hybrid position/force

controller to demonstrate the benefits of the self-tuning scheme.

A brief comparison of this self-tuning hybrid position/force controller is made with

another form of advanced control, specifically a robust hybrid controller using Variable

Structure Control (VSC). The performance and practicalities of the two control strategies

are discussed.

Finally, the implementation of this multivariable self-tuning hybrid position/force

controller on the actual TA9 manipulator is discussed, together with some preliminary

results.

7.2 Self-tuning Pole Placement Hybrid Position/Force Control

Hybrid position/force control can be realised using the multivariable self-tuning

pole placement controller framework proposed by Prager [4.4] and described in detail in

Section 4.4. As mentioned previously, such a multivariable scheme controls the entire

robot, including the coupling between the position and force controlled directions, as a

single system. This self-tuning strategy identifies a time variant low-order linear MIMO

model of the robot/environment. This is then used to continually adjust the controller gains

such that the poles of the closed loop system match some user specified values, irrespective

of changes in the dynamics of the system as conditions change.

The robot/environment system has inputs corresponding to the actuator input

voltages and the outputs are taken as the Cartesian positions and orthogonal forces to be

controlled. Hence, for the 2 DOF manipulator configuration described in Section 6.3, the

system has two inputs, v (k) and v (k), the slew and elbow actuator voltages respectively.1 2

The outputs consist of the Cartesian position along the y-axis, y(k), and the force alongC C

the x-axis, F (k), where k is the sample number in the discrete time sequence. TheC C
x
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Figure 7.1 Self-tuning Pole Placement Hybrid Position/Force Controller

(7.1)

structure of this controller is shown in Figure 7.1 (cf. Figure 4.1 for the generalised self-

tuning controller and Figure 6.1 for the fixed gain hybrid position/force controller).

The generalised low-order linear process model given in Equation 4.25 becomes

where A(z ) and B(z ) are polynomial matrices as described in Section 4.4.1, which have-1 -1

n  and n  2×2 matrix coefficients respectively. Similarly, D  and E(k) are 2×1 vectorsa b 0

representing the drift disturbances and modelling errors respectively. Therefore the total

number of model parameters for the MIMO model, n , is 4(n +n )+2 (cf. Equation 4.27).
� a b

The model structure and polynomial order, n  and n , should be chosen to besta b

reflect the actual physical process, so that the modelling error is as small as possible. This

choice is discussed in Section 7.4.2.

The system identification component of Figure 7.1 uses recursive least squares

(RLS) to iteratively estimate the A and B matrix polynomials using past values of the

system's inputs and outputs. As with the SISO system, the RLS algorithm is formulated
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Figure 7.2 MIMO Self-tuning Controller Configuration

using Bierman U-D factorisation to ensure numerical stability, which is easily extended to

the multivariable case, as described in Section 4.4.2. A forgetting factor, �, is utilised to

allow the model to adapt to time varying changes in the process dynamics. The operational

issues associated with the system identification component, including choice of �, are

discussed in the Section 7.4.1.

With the robot/environment represented by the low-order model of Equation 7.1,

the system block diagram can be redrawn so that the controller can be defined as a function

of the model parameters, as shown in Figure 7.2. As with the SISO joint angle controller,

this multivariable self-tuning pole placement controller incorporates a digital integrator,

yielding a MIMO incremental controller.

The controller matrix polynomials, F(z ) and G(z ), are as defined in Section 4.4.3,-1 -1

with n  and n +1 2×2 matrix coefficients respectively. These controller polynomials aref g

calculated on-line such that the poles of the closed loop system are equal to values defined

by the user specified polynomial T(z ). This involves the solution of a set of linear-1

simultaneous equations, as described in Section 4.4.3, which define n  and n  in terms off g

the model orders n  and n . The specific solutions to these linear simultaneous equationsa b
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for the model orders used in this thesis are given in Appendix C.

7.3 Utilisation of Simulations

The work in this Chapter is largely developed using the high fidelity nonlinear

model of the TA9 manipulator that was developed in Chapter Three. This model was

realised within the SIMULINK simulation environment as described in Section 3.6, and the

various files and parameters used are presented in Appendix A.5. It must be stressed that

this model is only for the purpose of simulating the dynamics of the manipulator, and is not

used within the controller part of the simulation.

The use of a simulation allows the development of such advanced control strategies

to be carried out without the additional complexity of a practical, real-time implementation.

There are several other benefits that a simulation provides over practical experimentation,

specifically :-

� it allows the controllers to be developed and tested much more efficiently.

� simulations allow controller performance to be investigated under conditions that

would be difficult to explore with practical experiments, for example, changes in

hydraulic fluid compressibility.

� simulations do not suffer from problems of repeatability, as practical experiments

can. This is particularly important for force control as small differences in

positioning can result in large changes in the forces observed.

� simulations also allow controllers developed by different research teams to be

compared using a common system. This is demonstrated in Section 7.6.

However, the practical implementation must always be borne in mind when the

controllers are being developed, as it is the practical realisation that is the fundamental goal



- 162 -

of this work. A practical implementation of the self-tuning hybrid position/force controller

is described in Section 7.7.

7.3.1 Simulation Model Validation

The hydraulic manipulator model used within the simulation must resemble the real

manipulator for the simulation results to be valid. The model parameters (e.g. link lengths,

angle limits and offset angles) were set to match the physical dimensions and specifications

of the actual manipulator, actuators and environment. The various model parameters used

are given in Appendix A.2. Validation against experimental data was required since not all

of the parameters were known accurately, and also to confirm the model formulation and

assumptions.

The kinematic parameters were initially validated through Cartesian control

experiments, comparing the actual motion of the end-effector to the expected motion. Since

this is purely a function of the manipulator link lengths and joint angles, this enabled them

to be validated in isolation.

The piston leakage parameter, k , introduced in Section 3.4.2 could not beleak

accurately obtained from any manufacturer's specification. Therefore, an open loop force

control experiment was devised to measure it. This test was carried out by having the

manipulator in contact with the environment under open loop force control, i.e. a fixed

current being supplied to the servovalves. The servovalve current was then increased by a

small known amount, causing an increase in contact force as shown in Figure 7.3a.

The size of the step in the contact force is related to k  and other known modelleak

parameters by means of expressions given in [3.4]. For the shoulder slew actuator k  wasleak

found to be 8.476×10  m  N  s . The values for the other actuators were estimated by-14 5 -1 -1

assuming the leakage to be proportional to the internal circumference of the piston.

With this value for k , the simulated open loop force response to the step inleak
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Figure 7.3 Experimental Determination of kleak

servovalve current was faster than that observed experimentally. By reducing the value of

bulk modulus, �, from the ideal value of 17×10  N m  to a more practical value of 7×108 -2 8

N m , the rise time of the simulation matched the experimental result, as shown in Figure-2

7.3b. The small perturbations that can be seen in the experimental response are due to

unmodelled effects which are only apparent when under open loop control.

The manipulator and environment model was linked to a fixed gain PID hybrid

position/force controller. This controller was configured to match, as closely as possible,

the experimental controller developed in Chapter Six, including using the same coordinate

systems and transformations. The gains used also matched those used in the experimental

setup, specifically K  = 0.002, K  = 0.0004 and K  = 0 for the force loops and K  = 20,Pf If Df Pp

K  = 1.5 and K  = 0 for the position loops. The stiffness of the simulated environment wasIp Dp

specified as 7×10  N m , representing the steel end-effector contacting the steel plate, as5 -1

used in the experimental setup. The sample rate was also set to match the 50 Hz used in the

experiments, however the control signals applied to each joint were calculated concurrently,

and not sequentially as in the experimental implementation.

The simulations were initialised with a stable contact established by setting the
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Figure 7.4 Simulated Fixed Gain Hybrid Position/Force Control Results

initial controller outputs to match the equilibrium voltages, as described in Section 3.5. This

therefore corresponds to the practical results presented in Chapter Six, neglecting the initial

impact transients.

The top-level SIMULINK block diagram for this hybrid position/force controller

is shown in Figure A.1 in Appendix A. The integration algorithm used within the

simulation is as described in Section 3.6.

The response of the simulated system is shown in Figure 7.4 and compares well

with the experimental results given in Figure 6.4. The simulated force response has a larger

disturbance response than the experimental result arising from the manipulator motion

along the y-axis. However, these short transients are probably masked in the practicalC

system by filters within the force/torque transducer controller. The response times of the

force control and position control show good correspondence between simulation and

experimental results.
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7.4 Self-tuning Hybrid Position/Force Control Development

As with the experimental hybrid position/force controller, a staged development of

the self-tuning controller took place to ensure that the system was not burdened by

unnecessary complexity at an early stage. This commenced with the development of a

self-tuning force controller for a single link manipulator. The ability of this simple

controller to cope with changing operating conditions was explored.

The satisfactory outcome of this SISO self-tuning force control paved the way for

the development of the MIMO self-tuning hybrid/position force control scheme. This was

developed firstly in terms of the MIMO system identifier, then appropriate model structures

were established and finally the overall self-tuning controller was then established. These

three stages will now be discussed in more detail.

7.4.1 MIMO System Identification Operation

The operation of the MIMO system identifier drew heavily upon the findings for the

SISO system identification, presented in Section 5.3.1. Specifically, the operational benefits

of using the Bierman UD RLS (BUD-RLS) algorithm over the standard Matrix Inversion

Lemma RLS (MIL-RLS) identified for the SISO system in Section 5.3.2, meant that the

BUD-RLS algorithm was used exclusively for the MIMO system identification.

As with the SISO system there is a trade-off between how fast the identifier can

track system changes and its sensitivity to noise, governed by the forgetting factor, �. The

effect of different forgetting factors on the parameter estimates was similar to that presented

in Figure 5.7 for the SISO case. A value of � = 0.99 was found to be most effective for this

system. With � = 0.995, the system identification was not sufficiently quick, and for � =

0.95, it proved too sensitive, causing large parameter changes even for small changes in

both position and force.

The initial model parameter estimates, �(0), used within the MIMO system
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identification were critical to its success. For the SISO case a simple integrator was

assumed, however here it was crucial to start with initial parameter estimates that better

matched the physical system. The initial model parameters used were obtained from off-line

identification of data acquired when the manipulator was executing a series of steps in both

position and force controlled directions. It should be noted that these initial parameter

estimates are a function of the sample period used, since the model is defined in discrete

time.

The use of initial parameter estimates that closely match the system should be

reflected in the initial value of covariance matrix, P(0). However, it was found that to

enable adaptation over a wide range of unknown operating conditions, a value of P(0) =

100I should be used. This matched that used for the SISO case. The use of a priori

determined initial parameter estimates also meant that the regression vector, �, should be

completely filled with past data before the identifier is started, rather than just being

initialised with data from the previous sample only (Equation 5.1), as in the SISO case.

As mentioned previously, for system identification to generate well conditioned

estimates, it requires the system to be persistently excited, since under steady state

conditions there is little new information for the identification algorithm. The fact that this

MIMO system has cross coupling actually helps maintain persistent excitation, since even

if only one input is being changed, the coupling helps to excite other parts of the system.

No covariance management techniques were employed in the MIMO system

identification algorithm. However, it is recognised that they should be used for practical

implementations to safeguard the identification process, especially when the manipulator

is not moving or when the inputs are changing smoothly or slowly.

7.4.2 MIMO Model Order and Structure Selection

As mentioned earlier, the choice of model structure and its order should ideally
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na nb nd RMS position error (mm) RMS force error (N)

1 1 0 0.0368 0.239

1 1 1 0.0364 0.236

2 1 0 0.0194 0.124

2 1 1 0.0192 0.122

3 2 1 0.0012 0.013

Table 7.1 RMS A Priori Prediction Errors for Different Model Orders

reflect the nature of the underlying continuous time process. However, the number of

parameters to be estimated, given by Equation 4.27, may quickly become excessive and

often only low order models may be feasible for practical implementations.

As with the SISO process, an empirical method of determining the most appropriate

model order is to examine the a priori prediction errors for different values of n  and n  anda b

simply take the one with the smallest error. Table 7.1 gives the RMS a priori prediction

error for both the force and position outputs of the MIMO model, for a sequence of open

loop steps in position and force. The mean of these errors were close to zero, indicating that

there was no bias in the parameter estimates generated.

Table 7.1 shows that with this process even low order models gave low modelling

errors and could track the process output well. However, when coupled to the appropriate

self-tuning controller they could not accommodate wide changes in operating conditions.

This may have arisen due to limitations with the corresponding controller, which become

increasingly sophisticated as the estimated model order increases. A suitable model order

was found to be n  = 3, n  = 2, matching the model order used in the earlier experimentala b

SISO joint angle control work, presented in Chapter Five.

The MIMO model structure proposed by Koivo [2.89] for a hybrid position/force

controller, discussed in Section 4.5, used a simplified structure where the off-diagonal
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terms in the A matrices were set to zero to reflect the orthogonality of his system. This

reduced the computational requirements of the system identification algorithm employed.

However, this structure proved unsuitable for the system considered here, due to the large

degree of cross coupling between position and force axes. Hence the off-diagonal terms

were included in the model, and the cross coupling was sufficient for all of the model

parameters to be readily identified. The resulting model contained 22 parameters for the 2

DOF manipulator system.

7.4.3 Self-tuning Hybrid Position/Force Control Operation

The initial parameter estimates of the model are critical to the successful operation

of the self-tuning hybrid position/force controller. If the model parameters do not match the

process, then it is prudent to use a fixed gain controller until the estimated model has

converged and the prediction error is small. Once the model has converged for the current

conditions, the self-tuner can track the changes in the physical system as they occur. Clearly

the closer the initial estimates are to the real system, the sooner the self-tuning controller

can be used. The initial parameter estimates were chosen, using a priori off-line

identification, to match the process at some prescribed nominal condition.

A fixed gain controller was used for the first 20 samples (0.2 s) following the first

commanded step, after which the self-tuning controller was used. This short time proved

sufficient to allow the controller to operate over the wide range of initial conditions

considered here, as demonstrated in Section 7.5. The use of incremental controllers

facilitated the switching between the fixed gain and self-tuning control strategies. The

sample rate used throughout this work was 100 Hz.

To further extend the range of initial conditions that the controller can successfully

accommodate, the length of time under fixed gain control could be increased, allowing

more time for the model to converge to appropriate values. Most previous reports of
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self-tuning control have used a fixed gain controller for a number of repeated steps, before

the self-tuning controller was switched on. If acceptable, this would allow operation over

an even wider range of conditions.

The self-tuning controller is computationally intensive. Around 6100 floating point

operations are required for the 2×2 system identification algorithm (with n  = 3, n  = 2 anda b

n  = 1) and approximately 1200 floating point operations for the corresponding self-tuningd

controller. This should be compared to the 46 floating point operations required for the

equivalent fixed gain PID hybrid position/force controller developed in Chapter Six. This

large number of floating point operations stems from the large matrices operated upon

during both the identification and control parts of the scheme. Although the controller is

computationally intensive, given the power of currently available digital signal processors,

it is feasible to implement this on the DSP system available at the sample rates required,

as demonstrated in Section 7.7. This aspect is also discussed further in Section 7.6.2, where

the self-tuning scheme is compared to another form of advanced control.

7.5 Self-tuning Hybrid Position/Force Control Results

This section presents results from the self-tuning hybrid position/force controller

developed in the previous sections. As with the fixed gain hybrid position/force controller,

simple tasks involving both position and force commands were used to investigate the

controller performance. Results are presented for a wide variety of operating conditions,

demonstrating the controller's ability to cope with both unknown initial conditions and

changing conditions. This includes changes in environmental stiffness, contact position,

level of applied force and hydraulic fluid compressibility. Further, these results are

compared to those obtained from an equivalent fixed gain controller to highlight the

benefits that the self-tuning scheme provides.

The self-tuning hybrid position/force controller directly replaced the fixed gain
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controller used in the validated simulation that was described in Section 7.3. The Cartesian

position and force responses presented here are defined in the constraint frame, {C},

matching the convention used in the earlier work.

The system identification algorithm and its initialisation is as discussed in Section

7.4.1. The model structure used had n  = 3, n  = 2 and n  = 1, with the correspondinga b d

controller matrix polynomials being as defined in Appendix C. The polynomial, T(z ),-1

defining the desired closed loop poles, was specified to give two discrete time poles at 0.96

for the position loop and 0.95 for the force loop, giving rise times of approximately 1.7 s

and 1.5 s respectively.

7.5.1 Simulation Tests Performed

The simple task used to investigate the performance of the controller was similar

to the one used with the fixed gain hybrid position/force controller in the preceding chapter.

The simulations were initialised with the manipulator in equilibrium, exerting zero force

( F  = 0 N) on the environment which was defined as being along the x = -1050 mm axis.C C
xd

Consequently, the procedure used previously to bring the manipulator into steady contact

with the environment was not required.

The basic hybrid position/force task used consisted of a step in commanded force

to F  = -100 N at t = 0.1 s, followed by a 50 mm move along the negative y-axis at t =C C
xd

2.0 s. The simulation was stopped at t = 5.0 s. Although simple, this task does encompass

both position and force responses as well as the cross coupling between them. Some

alternative, more complex tasks were also used, consisting of repeated steps in commanded

position and/or force, to investigate the ability of the system to adapt to changing

conditions. These tasks will be described when introduced.

The nominal conditions used in these results were, an environmental stiffness, K ,E

specified as 1×10  N m , a hydraulic fluid compressibility (bulk modulus, �) of 7×104 -1 8
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N m , an initial contact position of x = -1050 mm, y = 870 mm, corresponding to-2 C C

shoulder slew and elbow angles of 98.3� and 51.0� respectively.

The operation of the self-tuning controller was as discussed in Section 7.4.3, where

a fixed gain controller was used for the first 0.2 s after the first step was commanded. The

self-tuning controller was then utilised from t = 0.3 s onwards. The fixed gain controller

used was a pole placement law, using a model with n  = 1, n  = 1, and n  = 0, operating ata b d

100 Hz. The fixed model parameters for this were obtained through a priori off-line

identification, in the same way as used to obtain the initial parameter estimates for the

system identifier. Furthermore, the pole placement controller used the same desired closed

loop poles as the self-tuning controller.

7.5.2 Principal Results at Nominal Conditions

The response of the self-tuning hybrid position/force controller performing the

default task under the nominal conditions is shown in Figure 7.5. The desired response is

also shown, but the controlled system follows the desired responses so closely that the two

are almost coincident. The RMS error  between the actual and desired force response was†

0.46 N, and for the position control loop it was 0.32 mm. The responses also show that

there was little interaction between the position and force controlled directions, which was

a problem for the fixed gain PID controller as reported in Chapter Six. The small bump

seen on the position loop was entirely due to the short period of fixed gain control used at

the start of the task. Furthermore, since the same desired closed loop poles are used in both

fixed gain and self-tuning controllers, there is no obvious distinction in their responses

under these default conditions. The corresponding controller outputs are given in Figure

7.6.

The response of the fixed gain PID hybrid position/force controller to the same task
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Figure 7.5 Self-tuning Hybrid Position/Force Control Results at Nominal Conditions

Figure 7.6 Control Signals for Self-tuning Hybrid Position/Force Controller
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Figure 7.7 Fixed Gain PID Hybrid Position/Force Control Results at Nominal Conditions

and conditions is shown in Figure 7.7. The responses have degraded from those presented

earlier, with small oscillations now present. This has arisen since the operating conditions

have changed from those it was configured for. Therefore, a direct comparison with the

self-tuning controller cannot be made, since the two controllers have different tuning

specifications.

A better choice of fixed gain controller for comparison purposes is the fixed gain

pole placement (PP) controller employed during the first 0.3 s of the task prior to the

self-tuning controller. This used the same desired polynomial matrix as the self-tuning

controller, and so a direct comparison could be made.

The results for this fixed gain pole placement controller are given in Figure 7.8 and

also follow the desired response. The RMS error between the actual and desired force

response was 4.9 N, and for the position control loop it was 2.1 mm (cf. 0.46 N and 0.32



actual   
reference
desired  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
800

820

840

860

880

Time (s)

C
y 

(m
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−150

−100

−50

0

C
F

x 
(N

)

- 174 -

Figure 7.8 Fixed Gain PP Hybrid Position/Force Control Results at Nominal Conditions

mm for the same errors for the self-tuning controller).

7.5.3 Effect of Different Environmental Stiffnesses

The self-tuning controller needs to be able to cope with both unknown conditions

and time varying conditions. These two issues were investigated separately, through two

different types of task. Firstly, the ability to cope with unknown conditions was explored

by repeating the simple task under a variety of different conditions from those it was

configured for. Secondly, to investigate adaptation to time varying conditions, a longer task

was used, where the nominal operating conditions were used at start up, but were then

altered as time progressed. This section explores the ability of the self-tuning controller to

accommodate unknown and changing environmental stiffnesses.

Figure 7.9 shows the response of the self-tuning hybrid position/force controller
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Figure 7.9 Self-tuning Hybrid Position/Force Control Results for Different Stiffnesses

when started under a wide variety of different stiffnesses, ranging from 5×10  N m  to2 -1

1×10  N m , including the nominal stiffness of 1×10  N m . This represents a useful and5 -1 4 -1

practical range. Some degradation in the response was present at the extremes of this range,

including a significant correction at t = 1.3 s for the 5×10  N m  case, seen more clearly on2 -1

the position loop response. The self-tuning controller could not cope with stiffnesses

outside (both lower and higher) this range. However, it should be noted that the controller

could probably cope with a wider range of unknown initial conditions by using the fixed

gain controller for longer than 0.2 s. The coupling between the force and position loops was

expected to increase as the stiffness increased, however, this effect was only minor.

The response of the fixed gain pole placement controller to the same set of

stiffnesses were also obtained. For stiffnesses of 5×10  N m  and 1×10  N m  the responses2 -1 5 -1

were not stable, and so are not shown in Figure 7.10. For those stiffnesses that are stable,
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Figure 7.10 Fixed Gain PP Hybrid Position/Force Control Results for Different Stiffnesses

there was still considerable degradation under this fixed gain scheme, with the lower

stiffnesses resulting in a much slower force response. The larger stiffnesses, specifically

that of 1×10  N m , produced a highly oscillatory force response.5 -1

The performance improvement that the self-tuning controller provides, when

compared to the fixed gain pole placement scheme, is quantified in Table 7.2. This lists the

RMS errors between the actual and desired responses for the various stiffnesses used. The

nominal conditions, the conditions at which both controllers were setup, give the smallest

errors. The degradation of the control away from these nominal conditions is apparent, as

is the improvement that the self-tuner provides over the fixed gain scheme.

The ability of the self-tuning controller to accommodate changing conditions was

investigated using a sequence of force steps, stepping between -50 N and -150 N, while the

environmental stiffness was gradually changed as time progressed. Figure 7.11 shows the
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Environmental
Stiffness (N m )-1

Self-tuning Hybrid Control Fixed Gain Pole Placement

RMS Force
Error (N)

RMS Position
Error (mm)

RMS Force
Error (N)

RMS Position
Error (mm)

5×102 9.33 19.10 - -

1×103 6.66 2.87 37.23 5.18

2×103 5.32 0.87 24.03 3.76

5×103 2.72 0.35 9.08 2.40

1×10  (nom.)4 0.46 0.32 4.93 2.08

2×104 3.13 0.65 5.22 1.96

5×104 6.06 1.12 5.96 1.91

1×105 21.88 1.72 - -

Table 7.2 RMS Force and Position Errors for Different Stiffnesses

response of both controllers as the stiffness was increased logarithmically from 1×10  N m4 -1

to 3×10  N m  at t = 20 s, when the task was stopped. Figure 7.12 shows both responses5 -1

as the stiffness was decreased logarithmically from 1×10  N m  to 6×10  N m  at t = 20 s.4 -1 2 -1

The position reference was maintained constant, at y  = 870 mm, and is not shown as itC
d

was subject to little variation.

Figure 7.11a shows that the self-tuner can adapt to these changing conditions, and

maintains the system's response to closely match the desired response throughout the task,

except for a small correction at t = 8 s. The response of the fixed gain pole placement

controller, given in Figure 7.11b, has instabilities which occur at t = 15 s, corresponding

to a stiffness of 1×10  N m . Figure 7.12 shows the self-tuning controller coping with the5 -1

decreasing stiffness, whereas the fixed gain controller was unable to do so, with its response

becoming slower as the stiffness decreases. Again a correction is present in the self-tuning

controller response, at t = 14 s.

It might be expected that the changing environmental stiffness used in these results

could be shown to correspond to changes within certain model parameters. However,
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Figure 7.11 Hybrid Position/Force Control Results for Increasing Stiffnesses

Figure 7.12 Hybrid Position/Force Control Results for Decreasing Stiffnesses
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analysis of the estimated parameters did not reveal any clear corresponding trend. This may

be due to the sequence of steps exciting the parameter estimation so much so that it masked

these changes.

The range of stiffnesses that the self-tuning controller can cope with is large,

equating to a 200 times increase in stiffness. Furthermore, these tests show that the self-

tuning controller can adapt to a wider range of changing stiffnesses than it can

accommodate as unknown initial conditions.

7.5.4 Effect of Different Contact Positions

A similar series of tests, examining the ability of the system to cope with both

unknown initial conditions and changing conditions, were carried out for different contact

positions. The contact position, y, was varied along the x = -1050 mm axis, whichC C

encompasses a particularly wide range of manipulator dynamics, as discussed in Section

6.4.3 for the fixed gain hybrid position/force controller.

As in the previous section, the controller response to unknown initial conditions will

be explored first. Figure 7.13 shows the self-tuning controller responses for three different

initial contact positions, specifically y�  = 870 mm (the nominal condition), y�  = 370C C
t=0 t=0

mm and y�  = -130 mm. The position response plots have been scaled so that the threeC
t=0

plots can be compared on the same graph. Two further initial conditions were tested, y�C
t=0

= 1070 mm and y�  = -630 mm, however the self-tuning controller could not cope withC
t=0

such large differences from the nominal conditions that it had been setup to operate at.

The fixed gain pole placement hybrid position/force controller was operated at the

same five different initial contact positions. As with the self-tuning controller, the fixed

gain scheme did not work correctly for y�  = 1070 mm, as the force control could notC
t=0

maintain contact with the environment. This point is close to the edge of manipulator's

workspace, and hence control is particularly difficult as the Jacobian is approaching a
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Figure 7.13 Self-tuning Controller Results for Different Contact Positions

singularity [2.1]. The responses for y�  = 370 mm and more notably for y�  = -130 mm,C C
t=0 t=0

have significant oscillations in both the position and force responses. However, at the next

point along the x-axis, y�  = -630 mm, the controller responses actually improve. ThisC C
t=0

implies that there is a central region along the x = -1050 mm axis, that has significantlyC

worse responses than those either side of it. Figure 7.14 shows the various controller

responses, except for y�  = -130 mm and y�  = 1070 mm. The various effects identifiedC C
t=0 t=0

here are more clearly seen in the results that follow.

The RMS errors between the actual and desired responses for both the self-tuning

and fixed gain controllers for the various contact positions are given in Table 7.3. The self-

tuning responses that did work followed the desired response closely, as indicated by the

small errors. Those responses away from the nominal conditions suffered some degradation,

but this was only minor. The fixed gain pole placement controller did not perform as well
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Figure 7.14 Fixed Gain PP Controller Results for Different Contact Positions

as the self-tuning controller, suffering significantly more degradation. This behaviour away

from the nominal conditions is similar to that noted in the experimental results presented

in Section 6.4.3. The degradation within the central region, as mentioned earlier, can be

more clearly seen in Table 7.3. The errors for y�  = 370 mm and y�  = -130 mm becomeC C
t=0 t=0

increasingly worse, however, those for y�  = -630 mm do show some improvement.C
t=0

The self-tuning controller was then examined in terms of its ability to cope with

changes in contact position. This was carried out using a sequence of steps in commanded

contact position y , both increasing and decreasing away from the nominal condition.C
d

Figure 7.15 shows the response of both controllers to four successive +50 mm steps

in contact position, resulting in a final position of y = 1070 mm, as used as an initialC

contact position previously. The plots show that the self-tuning controller copes with this

well, adapting to the changing conditions and maintaining the system's response to match
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Initial Contact
Position, y�C

t=0
(mm)

Self-tuning Hybrid Control Fixed Gain Pole Placement

RMS Force
Error (N)

RMS Position
Error (mm)

RMS Force
Error (N)

RMS Position
Error (mm)

1070 - - 103.89 18.44

870 (nom.) 0.46 0.32 4.93 2.08

370 1.10 0.38 13.62 8.13

-130 2.40 0.63 75.07 15.56

-630 - - 33.65 5.00

Table 7.3 RMS Force and Position Errors for Different Contact Positions

Figure 7.15 Hybrid Position/Force Control Results for Increasing Contact Position

the desired response throughout the task. This is particularly relevant since the final step

was a condition that the self-tuning controller could not cope with when used as an initial

contact position. The degradation of the fixed gain controller is evident from the response,

particularly for the last step, where both position and force responses became unstable and
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contact could not be maintained. As mentioned previously this step takes the manipulator

close to the boundary of its workspace, and indeed the boundary constraint at y = 1099C

mm, can be seen in the plot as a saturation on the fixed gain position response.

The responses of the self-tuning and fixed gain controllers to decreasing steps in

commanded position are shown in Figures 7.16 and 7.17 respectively. These cover a much

wider range of positions than the previous test since the manipulator's workspace extends

much further in that direction. The steps used are of the same magnitude (50 mm) and

duration (2 s). Again the self-tuning system coped with the changing conditions well,

maintaining a consistent response for both position and force. The fixed gain controller did

not cope with this task as well, and the oscillatory behaviour of the system over the central

portion of the workspace, as mentioned previously, can be clearly seen in both the force and

position responses. The response did become more stable towards the end of the task, but

the degraded response accounts for about 65% of the range of positions. This central region

of poor control for the fixed gain controller was not identified with the experimental

system, since the range of positions explored was not sufficiently wide.

The results in Figures 7.15 to 7.17 show that the self-tuning system copes well over

a wide range of contact positions, whereas the fixed gain controller was unable to do so.

These tests again reinforce the view that the self-tuning controller can adapt to a wider

range of changing conditions, than it can accommodate as unknown initial conditions.

7.5.5 Effect of Different Levels of Commanded Force

The experimental work presented in Section 6.4.5 investigated the effects of

different levels of commanded force upon the response of the hybrid position/force

controller. The level of applied force alters the manipulator's dynamics due to the nonlinear

torque/current characteristics shown in Figure 3.6. However, the range of forces used in

Section 6.4.5 was restricted due to sensor saturation and any variations in the controller
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Figure 7.16 Self-tuning Controller Results for Decreasing Contact Position

Figure 7.17 Fixed Gain PP Controller Results for Decreasing Contact Position
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Figure 7.18 Hybrid Position/Force Control Results for Increasing Applied Force

response were not pronounced. This section re-examines this, looking at the controller

response over a much wider range of applied forces.

Figure 7.18 shows the response of both the self-tuning hybrid position/force

controller and the fixed gain pole placement scheme to a series of steps in commanded

force, starting at 0 N and increasing to -1350 N, stepping -150 N every 1 s. The self-tuning

controller has a consistent response throughout this task, and there is minimal disturbance

on the position loop. The fixed gain controller response shows degradation in both force

and position control as the level of applied force increases.

These results again demonstrate the improvements that the self-tuner provides over

the fixed gain hybrid position/force controller.

7.5.6 Effect of Different Hydraulic Fluid Compressibility

Another factor that influences the manipulator's dynamics is the compressibility of
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the hydraulic fluid, specified as the effective bulk modulus, �. This parameter changes with

temperature, entrapped air and hose wall flexibility, as discussed in Section 3.4.2. It is

difficult to carry out experiments that investigate this factor, as it is problematic to quantify

and influence the compressibility of the fluid. However, the use of simulations allow this

to be investigated.

The self-tuning and fixed gain hybrid position/force controllers were operated with

different values of �, specifically 17×10  N m , 7×10  N m  (the nominal conditions) and8 -2 8 -2

3×10  N m , representing a practical range of bulk modulus. The controllers were operated8 -2

using these conditions both as unknown initial conditions and as time varying conditions,

similar to those tests performed to investigate the effect of different stiffnesses.

Both the self-tuning controller and fixed gain pole placement controller coped well

with these variations, with no noticeable degradation being observed in either. However,

it should be noted that the original fixed gain PID hybrid position/force controller did start

to exhibit oscillations for a bulk modulus of 3×10  N m .8 -2

7.5.7 Effect of Using a Modified Reference Trajectories

The use of a ramped, rather than stepped, position reference was shown to be

beneficial for the experimental fixed gain PID hybrid position/force controller in Section

6.4.4. This section extends this to the self-tuning hybrid position/force controller.

A ramped position reference was used, which took 0.5 s to realise the 50 mm

movement in the basic task described in Section 7.5.1. This did not yield the same benefits

in reducing the coupling between the force and position loops as presented in Section 6.4.4,

since the amount of coupling present when using the self-tuning controller (see Figure 7.5)

was already small. One benefit that a ramped position signal did provide was that it

generated smaller actuator signals.

As mentioned previously, any practical implementation of a hybrid position/force
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controller should utilise ramped position references. However, this will inject less coupling

so it may have a detrimental effect upon the self-tuning controller due to the lower levels

of signal excitation. The employment of a covariance management technique should

prevent this from being problematic in practice.

7.6 Comparison Between Self-tuning and Robust Control Schemes

Within the UNION project, under which this work was funded, it was required to

compare a robust hybrid position/force controller, developed by LIRMM (Laboratoire

d'Informatique, de Robotique et de Microélectric de Montpellier), and the self-tuning hybrid

control scheme presented here. These are two different approaches to coping with the same

problem of plant uncertainties and variations, providing an interesting and useful

comparison [7.1]. Such comparisons are seldom available since the models and control

tasks used by one research group are rarely the same as those used by others. This work was

intended to address this and allow a direct comparison.

7.6.1 Description of VSC-HF Controller

The robust hybrid position/force controller developed at LIRMM was based on

Variable Structure Control (VSC), a robust control scheme which does not require

knowledge of the robot's dynamic parameters. The system is forced to behave according to

a predefined equation, represented in state-space by a sliding surface. This equation

includes a nonlinearity (sign function) which induces switching in the state variables

(position and velocity of the manipulator). To eliminate this chattering phenomenon, the

frequency of these oscillations was increased far beyond the bandwidth of the controlled

system, by the introduction of an additional high frequency (-HF) element.

The VSC-HF controller demonstrated good robustness for Cartesian position

control, however it was not very robust for force control with respect to variations in the
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stiffness of the environment. To cope with this, the concept of a Virtual Environment was

used to minimise the influence of the real stiffness.

A more detailed description of the scheme developed can be found in [7.1].

7.6.2 Comparison of Results

The two controllers were compared under a variety of different operating conditions,

similar to those presented in Section 7.5. Both performed well throughout the range of

conditions studied, with the VSC-HF controller performing better at different positions in

the workspace, while the self-tuning controller coped with changes in stiffnesses better.

Both proved superior to the conventional fixed gain controllers that had previously been

investigated [1.5]. The main findings from the study were :-

� both controllers had difficulty in operating at the extreme edge of the manipulator's

workspace (cf. Section 7.5.4).

� the VSC-HF controller coped with an initial contact position of y�  = -630 mm,C
t=0

whereas, as mentioned in Section 7.5.4, the self-tuning controller could not.

� the self-tuning controller could accommodate a wider range of environmental

stiffnesses than the VSC-HF scheme, which exhibited significant degradation at

both the upper and lower extremes of stiffnesses investigated. Figure 7.19 shows

the response of both controllers at two different stiffnesses, specifically 5×10  N m3 -1

and 5×10  N m , either side of the nominal stiffness used.4 -1

� the self-tuning controller also demonstrated greater robustness to variations in oil

compressibility, as demonstrated in Figure 7.20.

The comparison also examined issues such as computational complexity and system

commissioning, which can be as important as controller performance when selecting which
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Figure 7.19 Effect of Different Stiffnesses on Self-tuning and VSC-HF Controllers

Figure 7.20 Effect of Oil Compressibility on Self-tuning and VSC-HF Controllers
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control scheme to use.

In terms of computational effort required the self-tuning controller is significantly

more expensive than the VSC-HF scheme. The VSC-HF controller required approximately

120 floating point operations, whereas the self-tuning controller required around 7300.

However, since the VSC-HF controller requires a sample rate that was five times faster than

the adaptive scheme, the ratio of required computing power becomes approximately 10:1.

Both schemes are within the capabilities of current fast digital signal processors.

Both the VSC-HF and self-tuning controllers require correct initialisation before

they can operate with a given system. For the VSC-HF, the gain for the position control can

be set easily. However, without the virtual environment, any variation in the environmental

stiffness requires adjustment to the force control gains. The introduction of the virtual

environment alleviates this, simplifying implementation with minimal computational

expense. The self-tuning scheme can also be used to facilitate the commissioning process,

in that off-line analysis of previously recorded data can be used to initialise the parameter

estimates. The self-tuning controller provides some additional flexibility, in that the desired

responses are user specified and so can be changed as required for the given task.

One major practical drawback of the VSC-HF controller is that the control signal

switches at a high frequency, which would place considerable stress on the hydraulic

servovalves. The control signal from the self-tuning controller is much smoother (as shown

in Figure 7.6) placing less demand, and thus potential wear, on the system.

A more detailed presentation of the various results can be found in [7.1].

7.7 Experimental Self-tuning Hybrid Position/Force Control

The self-tuning hybrid position/force controller developed in this chapter was

applied to the experimental subsea hydraulic TA9 manipulator, restricted to two DOF

acting in a horizontal plane, as described in Section 6.3. The practical implementation
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followed the same staged development, as the simulation based system. Firstly, the system

identification algorithm was implemented, then its operation was explored. The self-tuning

controller was then implemented, initially for unconstrained Cartesian position control and

then for the constrained hybrid position/force control problem.

The system identifier and self-tuning controller algorithms were integrated within

the experimental fixed gain hybrid position/force controller that was described in Section

6.3.3. This enabled the same previously developed transformations and coordinate system

to be utilised. The MIMO self-tuning controller was integrated into the sequential DSP

operation, in the same way as the fixed gain hybrid position/force controller.

7.7.1 Practical MIMO System Identification

The MIMO Bierman UD factorisation RLS system identification algorithm was

implemented on the DSP. The five steps of the algorithm, as listed in Section 4.2.2, were

split over different read cycles in the sequential controller operation, allowing the

computational burden to be distributed. Specifically, the Jacobian, kinematics and force

transformations were evaluated as soon as the correct data was available. Steps 2 and 3 of

the RLS algorithm were then carried out at the next read cycle, and step 4 was calculated

during another. The specific sequence used depends upon the order in which the outputs

are read and when the inputs are required. This distributed evaluation gave execution times

of 22.7 ms for the MIL-RLS, and 2.86 ms for the BUD-RLS algorithms running on the

DSP, cf. Table 5.1. This indicated that the DSP had sufficient computing power to achieve

the target 100 Hz sample rate when using the BUD-RLS algorithm.

The various operational issues associated with the system identifier were then

explored. Firstly, test signals were applied to the force and position references, whilst under

fixed gain control, and the responses captured. Off-line identification, using the same

algorithm implemented as MATLAB code, was then carried out on this data to examine the
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Figure 7.21 Effect of Different � on the a  Parameter Estimate111

effects of different operational factors. This was also used to verify the correct operation

of the on-line system identifier, which was found to operate correctly.

As with the simulated system, the parameter estimates were initially set to match

an integrator, but subsequent tests utilised initial parameters estimates obtained from

previous off-line identifications. Different values of forgetting factor (between � = 0.999

and 0.99) were tried, as were different values of P(0) and different methods of initialising

the regression vector. A typical set of estimates obtained are shown in Figure 7.21 for

different values of forgetting factor.

The experimental MIMO system identifier could produce converged parameter

estimates, however the main observation was that it was more sensitive to the initial

parameter estimates than the simulation version had been. Furthermore, the increased

sensitivity of this system is also apparent when Figure 7.21 is compared to Figure 5.7,

which shows a similar plot for the experimental SISO system identifier. The effect of

including or omitting the dc offset in the manipulator control signals was also investigated,

and found to have little effect on the parameter estimates.

Nevertheless even with the increased sensitivity of the system identifier, the mean

a priori prediction error was still close to zero indicating unbiased estimates. Its RMS value
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was also small indicating that the model was able to track the system well. For a typical

system identification test, mean a priori prediction errors of 0.0075 mm for the position

loop and 0.022 N for the force loop were obtained, with the RMS error being 0.4 mm and

1.5 N respectively.

As with the simulation study no covariance management was employed within the

system identification algorithm. This may have helped to make the system less sensitive.

7.7.2 Development of the Self-tuning Hybrid Position/Force Controller

The implementation of the experimental self-tuning controller did not result in an

operational hybrid position/force controller. The self-tuning controller was successfully

implemented within the sequential DSP operation and linked to the system identification

algorithm. The controller proved to be realisable at the desired 100 Hz sample rate.

The controller was initially tested by configuring it to use the fixed parameter

estimates used to initialise the system identification. This yielded a fixed gain pole

placement controller, similar to the one used in Section 7.5, but using higher order models

and hence higher order controllers. These fixed gain pole placement controllers produced

responses that corresponded to the user specified desired polynomial, T(z ). This verified-1

that the self-tuning controllers were implemented correctly, and it also allowed a few key

operational issues associated with the controller to be explored.

Firstly, the choice of T(z ) was crucial to the correct operation of the controller. It-1

was observed that specifying the desired poles at 0.97 and below, produced a response that

was too oscillatory and that quickly became unstable. Further, poles at 0.99 and above

proved too slow and control was poor. Good correlation between the controller response

and the desired response was obtained when using desired poles at 0.98. Secondly, it was

observed that if more, or indeed fewer, than two desired poles (as used throughout this

work) were used, then the fixed gain pole placement controller would not work correctly.
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Figure 7.22 Response of Different Experimental Controller Structures

The effect of using the alternative incremental self-tuning controller structure,

shown in Figure 4.3, was also investigated. This is illustrated in Figure 7.22, which shows

the response of a fixed gain pole placement controller with the usual structure, as in Figure

4.2, and the response of the alternative controller structure. Clearly, this latter form is better

suited to this application, as it has less overshoot and follows the desired response much

more closely.

Unfortunately, the experimental self-tuning hybrid position/force controller could

not be made to operate successfully. It is clear from the above discussion that the

experimental implementation was far more sensitive to its initialisation and operation than

was the simulation based controller. However, there are many modifications and alternative

approaches that could be employed to give a working experimental self-tuning hybrid

position/force controller. Some of these are discussed in Section 8.3.

7.8 Summary

This chapter has explored the self-tuning hybrid position/force controller, in terms

of its development, operation, benefits and experimental implementation. The bulk of the



- 195 -

work presented in this chapter utilised a simulation of the manipulator. The need and

validity of the simulations was considered and every effort was made to ensure that there

was close correspondence with the experimental hydraulic manipulator.

There are many parameters within the robotic system that can change during a

typical subsea task, such as contact position, environmental stiffness, applied force and

hydraulic fluid compressibility. Variations in all of these were explored, looking at the

ability of the controller to cope with them as unknown initial conditions and as time varying

conditions. The self-tuning hybrid position/force controller was able to accommodate a

wide range of the conditions examined, demonstrating significant benefit over the fixed

gain controller used for comparison purposes. The range of unknown initial conditions

could be extended by allowing the system to remain under fixed gain control for longer,

allowing the system identifier to converge to more appropriate parameter estimates.

It should be recalled that Chapter Five demonstrated that the greatest changes in

manipulator dynamics occur when the robot is moving with or against gravity. This effect

was not examined here since the manipulator model, as in the practical system, was

confined to the horizontal plane. Therefore larger variations in manipulator dynamics would

be seen for the full 6 DOF system, and hence the self-tuning controller may be expected to

provide even greater scope for improvement.

The comparison between the self-tuning controller and the VSC-HF controller

developed at LIRMM proved interesting, identifying the strengths and weaknesses of both

of these advanced control techniques. It is unusual to be able to compare two techniques

so directly and the findings are valuable.

Although the benefits of the self-tuning hybrid position/force controller were proved

in simulation, attempts to translate this to the experimental manipulator were not

successful. The experimental investigation highlighted some practical issues with the

system, however there are many more that can be explored to realise a working system.
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Chapter 8

Conclusions

8.1 Summary

This thesis has demonstrated the benefits that both SISO and MIMO self-tuning

control provides over the generally used fixed gain control for both constrained and

unconstrained manipulator control problems. The benefits highlighted included; extending

the range of operating conditions that can be accommodated; reduced a priori knowledge

of the operating conditions required; reduced coupling for both SISO and MIMO systems;

more repeatable and easier defined controller performance. These controllers also enable

increasingly complex tasks to be carried out with greater reliability and speed than is

currently achievable.

It should also be noted that limitations in this investigation, such as not exploring

the manipulator's full payload capacity and confining the manipulator to the horizontal

plane, suggests that the full 6 DOF manipulator could experience an even wider range of

conditions than those considered here. Hence, the self-tuning controllers developed may

provide even greater scope for improvement when applied to a manipulator in actual use.

However, these benefits are at the expense of increased controller complexity and

more problematic initialisation. These disadvantages are the prime obstacles as to why the

self-tuning controllers developed here will not find immediate use in the field.

Nevertheless, this work does demonstrate the increased effectiveness and capabilities of

underwater manipulation systems provided by these advanced controllers. It therefore
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represents a significant step forward for offshore teleoperated manipulation systems, and

may even contribute to bringing fully autonomous operation one step nearer.

The key feature of the controllers developed in this thesis was the focus on practical

issues pertaining to a typical subsea hydraulically actuated manipulator. The specific

problems associated with the TA9 manipulator that had to be accommodated included :-

    • joint angles were obtained from noisy, low accuracy analogue potentiometers.

    • ideally joint angle velocities should be used in the control system, but such

instrumentation was not available on this industrial manipulator.

    • considerable stiction was present in the hydraulic pistons and joints which acts to

degrade control performance.

The practicalities considered applied not only to the selection and design of the

controllers, but also explored real operational issues associated with the system

identification and pole placement components of the self-tuning controller. Though the

MIMO self-tuning hybrid position/force controller was not operational on the experimental

system, its development was still constrained by what could be practically implemented.

This work has not revealed any fundamental reason for a practical system being unfeasible,

and suggestions for further work, discussed in Section 8.3, may yield a workable solution.

The development of the kinematic and dynamic models representing the TA9

hydraulic manipulator enabled the various controllers to be tried and tested on a realistic

simulation before being applied to the experimental manipulator. This also provided a

thorough understanding as to how hydraulic manipulators function, and the implications

that this has upon position and force control. The validity of the models was paramount and

every effort was made to ensure that there was close correspondence with the experimental

hydraulic manipulator.
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8.2 Author's Contributions

The most significant contribution to the subject of robot control that this thesis

makes is that the advanced control schemes developed are ultimately applied to an

industrial hydraulic manipulator, typical of those used in the offshore oil and gas industries.

Therefore, the control strategies have been developed within the constraints of the real

robot and do not rely on instrumentation that would only be found on laboratory

manipulators, or on a simulated idealised model as is often used in much reported work.

The controllers have been developed to allow the manipulator to operate in unknown and

changing environments, and also to extend the capabilities of the manipulator by realising

Cartesian position and force control.

The self-tuning pole placement controllers developed in this thesis are novel in both

their application and their structure. Firstly, this is the first instance of such a SISO self-

tuning pole placement scheme being used with an offshore hydraulic manipulator.

Secondly, the application of a MIMO self-tuning pole placement scheme to the hybrid

position/force control problem has not been reported before. The use of an incremental

controller structure also has a degree of originality. The controllers developed here were

placed in the context of previously proposed self-tuning manipulator controllers,

summarised in Tables 2.1, 2.2, 4.1 and 4.2, illustrating how they complement previously

reported work and their novel features.

8.3 Suggestions for Future Work

There are two main areas where the work presented in this thesis can be usefully

extended; firstly, enabling the MIMO self-tuning hybrid position/force controller to work

with the real hydraulic manipulator, and secondly, simplifying controller initialisation.

Indeed controller modifications that are better suited to the practical application, may also

yield a controller that is easier to initialise.
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The main suggestions for further work are :-

� to investigate the various covariance management methods mentioned in Section

4.2.4, to ensure the long term correct functioning of the system identification

algorithm. The use of a variable forgetting factor has been shown to offer some

improvement in this regard [2.82]. A simple but possibly useful idea to explore,

would be the use of different values of forgetting factor for the force and position

parts of the MIMO system identifier.

� the square-root parameter estimation algorithm has some reported advantages [2.90]

over the standard RLS algorithm. It would be useful to compare it to the Bierman

UD Factorisation (BUD-RLS) algorithm used in this thesis.

� to realise the identified model and self-tuning controllers using the �-operator

[2.57]. This gives a better approximation of the underlying continuous time system

than the backward shift operator, z , used in Equation 4.22. Furthermore, it can also-1

remove numerical problems which can arise when using the backward shift operator

when sampling rates are too fast.

� the solution to the pole assignment problem (Equations 4.16 and 4.35 for the SISO

and MIMO cases respectively) can be solved using more robust algorithms, such

as Kucera's method [2.57]. These could be explored to see if they offer any benefits

for this particular application.

� the benefits and effects of using the alternative self-tuning controller structure given

in Figure 4.3, and demonstrated in Figure 7.22, should be explored further.

� there are certain elements within the manipulator system that are well known and

that knowledge should be utilised explicitly within the self-tuning controller. For

example, this could involve incorporating the inverse static actuator characteristics

or Jacobian into the controller explicitly, so that these well known elements do not
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have to be identified.

� restricting the A matrices in the MIMO identified process model to be diagonal (as

used by Koivo [2.63]) was attempted in simulation, but this did not work as well

as using the full matrix. However, this could prove beneficial for the practical self-

tuning hybrid position/force controller.

� for the MIMO self-tuning controllers, the polynomial T(z ) representing the desired-1

closed loop poles, were confined to being diagonal. It may be useful to investigate

the effect of specifying the off-diagonal values as well.

Several complications with the development of a fully deployable system were

noted but not investigated. These could also form areas of further work :-

� the extension of the hybrid position/force controller to a full 6 DOF system,

including operation outside of the horizontal plane considered here. The ability of

the system to follow curved surfaces could also be explored, as could its ability to

cope with typical tools that may exhibit friction.

� using the developed force controllers within a commercial teleoperated manipulator

system to increase its capabilities, for example providing guarded moves and

automatic insertions.

� the extension of hybrid position/force control to a non-square system, where the

number of actuators does not equal the number of controlled directions. This would

not only exhibit the problem of multiple kinematic solutions, but would also require

the extension of the MIMO self-tuning controller to such a system.

� the use of position, rather than velocity based measurements for manipulator control

is known to be less ideal, since the manipulator is a rate driven system. It may be

useful to investigate the benefits of using velocity signals, obtained directly from
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tachogenerators, as this may identify sufficient benefits to justify their inclusion in

future generations of subsea manipulators.

Finally, the comparison between the self-tuning and VSC-HF robust hybrid

position/force controllers presented in Section 7.6, highlighted that both provided benefits,

albeit in different areas. Therefore, one promising avenue of work would be to combine

these two types of control, to give a system with the benefits of both. An initially interesting

combination may be to use a robust controller for the position control part of a hybrid

controller, and a self-tuning controller for the force control, as it has been demonstrated that

these are the strong points of each.



- 202 -

Appendix A

TA9 Manipulator Model Parameters
and Simulation Files

A.1 Introduction

This appendix gives the various parameters used within the TA9 manipulator model

developed in this thesis. These parameters were obtained from specifications, physical

measurements and estimation. Some of these parameters were also used directly in the

experimental control scheme implemented on the actual manipulator, such controller gains,

link lengths and angle limits.

Also given are the closed form model matrices for the restricted TA9 and the

various files that constitute the SIMULINK simulation model.

A.2 TA9 Model Parameters

The manipulator kinematic and inertial parameters, obtained from Slingsby

drawings and physical measurements :-

l  = 0.452 m1

l  = 0.522 m2

l  = 0.558 m (including length of ball transfer unit tool used)3

w  = 0.17 m1

w  = 0.14 m2

w  = 0.12 m3
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m  = 18.49 kg1

m  = 9.70 kg2

m  = 7.84 kg3

v  = 20 N m s radj1
-1

v  = 20 N m s radj2
-1

�  range = 66.95� to 182.45�1

�  range = 0.57� to 102.32�2

�  = 14.48� (fixed wrist offset angle)3

The hydraulic actuator parameters are :-

V  = 1.83×10  mt1
-4 3

V  = 1.75×10  mt2
-4 3

A  = 10.67×10  m2(1)
-4 2

A  = 7.72×10  m2(2)
-4 2

l  = 0.337 ma1

l  = 0.337 ma2

l  = 0.079 mb1

l  = 0.08 mb2

k  = 8.476×10  m  N  sleak1
-14 5 -1 -1

k  = 7.417×10  m  N  sleak2
-14 5 -1 -1

v  = 30 N m  sp1
-1

v  = 30 N m  sp2
-1

�  = 204.11�poffset1

�  = 21.80�poffset2
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It should be noted that only viscous friction was used in the simulations. Coulomb

friction was considered, however it made little difference to the controller response and

made the simulation run excessively slowly, and hence was not used in the simulations.

The MOOG E777 series of flow control servovalves, used in the TA9 manipulator,

are low cost equivalents of the E050-31. The following data was obtained from MOOG

E777-006 (PDS E777 1.88) technical specifications :-

Signal: ±10 ma (parallel coils), ±5 ma (series coils)

Resistance: 1000 � per coil

Leakage: < 4% rated flow at rated pressure

Flow: 6.35×10  m  s  (at 2000 psi load pressure)-5 3 -1

11.00×10  m s  (no-load rated flow)-5 3 -1

Max Pressure: 2.07×10  N m  (3000 psi )7 -2

Resolution: < 1.0% rated signal

Hysteresis: < 3.0% rated signal

Rise time: 0.0035 s (at rated pressure, 3000 psi)

(to 90% of output) 0.0045 s (at 2000 psi)

0.0060 s (at 1000 psi)

-3 dB point: > 200 Hz (at rated pressure, 3000 psi)

These correspond to the following parameters for the first order approximation of

the servovalve (±5 ma rated current, series connected coils) :-

K  = 7.60×10  m mAi
-5 -1
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�  = 0.0017 si

Hydraulic fluid parameters :-

density, � = 870 kg m-3

bulk modulus, � = 7×10  N m8 -2

supply pressure, P  = 175×10  N m (2500 psi)s
5 -2

Environment parameters for the hybrid position/force controller :-

K , environmental stiffness = 1×10  N mE
4 -1

PID controller settings (simulation and practical) for the hybrid position/force control :-

K  = 20.0Pp

K  = 1.5Ip

K  = 0Dp

K  = 0.002Pf

K  = 0.0004If

K  = 0Df

� , sample period = 0.01 ss

Controller output limit = 8.188 V

Controller output quantisation level = 4.0×10  V-3

shoulder slew quantisation level = 6.39×10  �-4

elbow quantisation level = 5.11×10  �-4

force quantisation level = 0.326 N



- 206 -

A.3 Useful Conversions

Some useful conversions between metric, imperial and American units for pressure

and flow :-

1 lb = 4.44822 N

1 in = 6.4516×10  m2 -4 2

1 psi = 6894.76 N m-2

1 bar = 1×10  N m5 -2

1 gpm = 6.31×10  m  s-5 3 -1

1 lpm = 1.67×10  m  s-5 3 -1

1 cis = 1.64×10  m  s-5 3 -1

Note, gpm = gallons per minute, lpm = litres per minute, lb = pounds, in = inches, psi =

pounds per square inch (lb in ), cis = cubic inches per second (in  s ).-2 3 -1

A.4 TA9 Dynamic and Kinematic Model Matrices

This section gives the closed form model matrices for the restricted 2 DOF TA9

manipulator, derived using the conventional recursive Newton-Euler dynamic equations

[2.1]. A generalised direct drive manipulator with an arbitrary number of joints is

represented by the following closed form dynamic model, Equation 3.27 :-

where � is the vector of joint torques, � is the vector of joint angles, M is the inertia matrix

of the manipulator links, V is the Coriolis and centrifugal effects matrix, G is the gravity

matrix, B is the vector of friction acting at each joint, J is the Jacobian of the manipulatorC

and F is the vector of forces and torques at the end-effector.C
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The manipulator model developed assumed that each link was a homogeneous

rectangular mass, with its centre of mass being halfway along its principal axes. The

specific matrices used in the above model, are defined as follows :-

where :-
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and c  = cos(� ), s  = sin(� ), c  = cos(� +� ) etc. and the definitions of �, � and F are as1 1 1 1 12 1 2
C

specified in Chapter Three. Furthermore, the forward kinematics of the manipulator is given

by Equation 3.1 and the Jacobian, J, is given by Equation 3.2.C

Two specific force transformations were used in the hybrid position/force control

scheme. The first, the transformation from the sensor frame, {S}, to end-effector frame {4},

was defined within the ATI transducer controller as :-

SLIDER 0 0 1012 900 -300 900

following the conventions of rotations and units used within that device [6.1]. The second

transformation, from frame {4} to the constraint frame, {C}, is given by Equation 6.4.

A.5 MATLAB/SIMULINK Simulation and Modelling Files

This section gives the MATLAB M-files used to model the TA9 hydraulic

manipulator, using the relationships developed in Chapter Three. The manipulator model

represents the should slew and elbow joints, therefore restricting the model to operation in

the horizontal plane, as detailed in Section 3.3. The files representing this model have been

developed to be generic, and hence can easily be extended to more joints of the robot.

Figure A.1 shows the SIMULINK block diagram of the model, HYBRIDST.MDL.

This is primarily a series of blocks representing the controller and manipulator model,

together with blocks that generate the controller reference signals and those that save the

model's outputs to the MATLAB workspace.

The files used to execute the simulation are listed at the end of this appendix.

SIM2DATA.M is the file that initialised the various parameters used in the model,

matching those defined in Section A.2, and this needs to be executed before a simulation

is run. The manipulator model and controller are implemented as SIMULINK s-functions,

specifically by the files LNK2_05H.M and RLSCONT2.M (for the MIMO self-tuning
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Figure A.1 SIMULINK Diagram for Self-tuning Hybrid Position/Force Controller

hybrid position force controller) and CO
N

TS.M
 (for the fixed gain PI hybrid position/force

controller). The file SIM
U

LA
TE.M

 w
as sim

ply a convenient w
ay to initialise, execute the

sim
ulation and store and display the results.
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SIM2DATA.M

% two hydraulic link dynamics model simulation parameters - based on
% Slingsby Engineering Ltd (SEL) TA9 shoulder slew and elbow joints
% with 14.48 deg offset in wrist. NOTE : all angles etc are in RADIANS
global joints pm_ini x_ini KE ground theta_ini theta_dot_ini;
global F Fram A2 theta_poffset ki taui ps K KH;
global samp_per v_ini ypos_ini fxee_ini;
global KP KI KPP KPI;
global na nb nd nt lambda;
global THETA T1 T2 T3 T4 T5 FIXG0 FIXG1;
global PSI P U D;
model = 'hybridst'
joints = 2;
%
% link parameters
%
L = [ 0.452; 0.522; 0.558 ]; % from SEL data
M = [ 18.49; 9.70; 7.84 ]; % from SEL data
H = [ 0.17; 0.14; 0.12 ]; % from SEL data
wrist_offset = 14.48*pi/180; % 14.48 deg
g = 0.0;
F = [ 20.0  0.0
        20.0  0.0 ]; % estimated
theta_lim = [ 3.1844 1.1685

     1.7858 0.0099 ]; % from SEL data
%
% hydraulic actuator parameters - shoulder slew & elbow
%
Vt = [ 1.83e-4; 1.75e-4 ]; % estimated from SEL drawings
A2 = [ 10.67e-4; 7.72e-4 ]; % from SEL drawings
la = [ 0.337; 0.337 ]; % from SEL drawings
lb = [ 0.079; 0.080 ]; % from SEL drawings
theta_poffset = [ 3.5622; -0.3805 ]; % from SEL drawings
Fram = [ 30.0  0.0

 30.0  0.0 ]; % [ from Traa ; not-known ]
kleak = [ 8.476e-14; 7.417e-14 ]; % measured
ps = 175e5; % from MOOG data sheets
beta = 7e8; % from Stringer - ideal = 17e8
%
% servovalve parameters - for MOOG E777-006 (series connected coils)
%
kv = [ 6.32e-5; 6.32e-5 ]; % from MOOG data
ki = [ -7.60e-5; -7.60e-5 ]*0.6104; % from MOOG data and servovalve amps (8.192V -> 5mA)
taui = [ 0.0017; 0.0017 ]; % from MOOG data
%
% internal model constants - assuming homogeneous mass distribution
% 
K = [ 0.5*L(3)*M(3)*g*cos(wrist_offset)+L(2)*g*(0.5*M(2)+M(3))
       -0.5*L(3)*M(3)*g*sin(wrist_offset)
       L(1)*g*(0.5*M(1)+M(2)+M(3))
       -0.5*L(1)*L(3)*M(3)*sin(wrist_offset)
       0.5*L(1)*L(3)*M(3)*cos(wrist_offset)+L(1)*L(2)*(0.5*M(2)+M(3))
       M(1)*(4*L(1)^2+H(1)^2)/12+M(2)*(4*L(2)^2+H(2)^2)/12+M(3)*(4*L(3)^2+H(3)^2)/12+L(2)*M(3)*(L(2)

+L(3)*cos(wrist_offset))+(L(1)^2)*(M(2)+M(3))
       M(2)*(4*L(2)^2+H(2)^2)/12+M(3)*(4*L(3)^2+H(3)^2)/12+L(2)*M(3)*(L(2)+L(3)*cos(wrist_offset))
       -L(3)*cos(wrist_offset)-L(2)
       -L(3)*sin(wrist_offset)
       -L(1) ];
KH = [ 4*beta*kv./Vt 4*beta*A2./Vt la.*la+lb.*lb la.*lb 4*beta*kleak./Vt ];
%
% initial conditions - for equilibrium at ypos ~= 0.87m, xpos ~= -1.05m
%
theta_ini = [ 1.7157 ; 0.8901 ];
theta_dot_ini = [ 0.0; 0.0 ];
ci1 = cos(theta_ini(1));
si1 = sin(theta_ini(1));
ci12 = cos(theta_ini(1)+theta_ini(2));
si12 = sin(theta_ini(1)+theta_ini(2));
xpos_ini = -K(10)*ci1-K(8)*ci12+K(9)*si12;
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ypos_ini = -K(10)*si1-K(8)*si12-K(9)*ci12;
fxee_ini = 0.0;
% torque for equilibrium
tmp = K(1)*ci12+K(2)*si12+fxee_ini*(K(8)*si12+K(9)*ci12);
t_ini = [ tmp+K(3)*ci1+K(10)*fxee_ini*si1

tmp ];
pm_ini= t_ini.*sqrt(KH(:,3)-2*KH(:,4).*cos(theta_ini-theta_poffset)) 
./(A2.*KH(:,4).*sin(theta_ini-theta_poffset));
x_ini = kleak.*pm_ini./(kv.*sqrt(ps-sign(pm_ini).*pm_ini));
v_ini = x_ini./ki;
%
% position and force step parameters
%
sim_duration = 5;
yd_time = [ 0 2.0 2.0 sim_duration ];
yd = [ ypos_ini ypos_ini ypos_ini-0.05 ypos_ini-0.05 ];
fxd = [ fxee_ini fxee_ini fxee_ini-100 fxee_ini-100 ];
fxd_time = [ 0 0.1 0.1 sim_duration ];
%
% environment parameters
%
KE = 1e4;
ground = xpos_ini - fxee_ini/KE;
%
% analogue to digital and digital to analogue convertor parameters
%
theta_quant = [ 6.39e-4;

5.11e-4 ]; % 12 bit (slew range=150deg, elbow=120deg)
force_quant = 0.326; % 12 bit
dac_quant = 4.0e-3; % 12 bit
theta_wc = 2*pi*19.4; % 19.4 hz anti-aliasing filters
%
% controller parameters
%
samp_per = 0.01
control_limit = [ 8.188; 8.188 ];
control_int_ini = [ 0 ; 0; v_ini ];
%
% PID Controllers
%
KP = [ 0.0020 ; 0.0020 ];
KI = [ 0.0004 ; 0.0004 ]*samp_per;
KPP = [ 20.0 ; 20.0 ];
KPI = [ 1.5 ; 1.5 ]*samp_per;
%
% Fixed Gain Pole Placement Controller
%
TFIX1 = [ -1.92 0; 0 -1.9 ];
TFIX2 = [ 0.9216 0; 0 0.9025 ];
load ttt
a1 = -TTT(1:2,:)';
b1 = TTT(3:4,:)';
FIXG0 = b1\(TFIX1+eye(2)-a1);
FIXG1 = b1\(TFIX2+a1);
%
% multivariable self-tuning controller parameters 
%
na = 3; nb = 2; nd = 1;
nt = na*joints+joints*nb+nd;
lambda = 0.99;
PSI = [ zeros(joints*(na+nb),1); ones(nd,1) ];
P = 100*eye(nt);
U = eye(nt);
D = 100*ones(nt,1);
%THETA = [ 1.0 0.0; 0.0 1.0; zeros(joints*(na-1),2); samp_per samp_per; samp_per samp_per;

zeros(joints*(nb-1)+nd,2) ];
THETA = [  0.7265   -0.0335

     0.0004    2.5233
    -0.2010   -0.0001
    -0.0008   -2.3199
     0.4746    0.0656
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     0.0003    0.7961
    -0.0012   -0.2737
     0.0006    0.6865
    -0.0004   -2.5779
     0.0019    0.8732
     0.0000   -0.0526 ];

T1 = [ -1.92 0; 0 -1.9 ];
T2 = [ 0.9216 0; 0 0.9025 ];
T3 = [ 0 0; 0 0 ];
T4 = [ 0 0; 0 0 ];
T5 = [ 0 0; 0 0 ];
%
% simulation parameters
%
no_pts = sim_duration/samp_per+1;
tolerance = 1e-6;
minstep = 1e-5;
maxstep = 0.1;

lnk2����05.m

function [sys, x0, str, ts] = lnk2�05h(t,x,u,flag)
% s-function for the two-link manipulator dynamic model with environment
% modelled internally as a stiffness KE - with offset in last link
%
% Arm modelled having a homogeneous mass distribution, with viscous and
% coulomb friction and actuated by a linear hydraulic actuator acting about
% a pivot. This includes the full non-linear servovalve model, oil
% compressibility, leakage and friction associated with the hydraulic ram.
%
% u = [i�in1; i�in2]
%   = [ servovalve input currents (ma)]
% x = [theta1�dot;theta2�dot;theta1;theta2;pm1;pm2;spool�pos1;spool�pos2]
%   = [ joint velocities ; joint angles ; load pressures ; spool positions]
% y = [theta1�dot; theta2�dot; theta1; theta2]
% theta�ddot = I1 \ [ [tau1 ; tau2] - V - G - I2 - fric]
%
% [tau1; tau2] = joint torques = (a2*pm - piston�fric)*jp(theta)
% V = Coriolis Matrix
% G = manipulator Gravity Matrix
% fric = joint friction matrix
% I1 = inertial matrix
% I2 = interaction matrix
%
% andy clegg heriot-watt university 10/8/95
%
global K KH F Fram theta�ini theta�dot�ini pm�ini ps joints A2;
global theta�poffset ki taui x�ini KE ground;
if abs(flag) == 1

% return state derivatives
c1 = cos(x(3));
s1 = sin(x(3));
c2 = cos(x(4));
s2 = sin(x(4));
c12 = cos(x(3)+x(4));
s12 = sin(x(3)+x(4));
tmp = K(1)*c12+K(2)*s12;
G = [ tmp+K(3)*c1 ; tmp ];
tmp = K(4)*c2-K(5)*s2;
V = [ tmp*x(2)*(x(2)+2*x(1)) ; -tmp*x(1)*x(1) ];
tmp = K(5)*c2+K(4)*s2;
I1 = [ K(6)+2*tmp K(7)+tmp ; K(7)+tmp K(7) ];
fxee = (-K(10)*c1-K(8)*c12+K(9)*s12-ground)*KE;
if (fxee<0)

tmp = fxee*(K(8)*s12+K(9)*c12);
I2 = [ tmp+fxee*K(10)*s1 ; tmp ];

else
I2 = [ 0.0 ; 0.0 ];

end
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jp = KH(:,4).*sin(x(3:4)-theta�poffset)./sqrt(KH(:,3)-2*KH(:,4).*cos(x(3:4)-theta�poffset));
y�dot = jp.*x(1:2);
tau = (A2.*x(5:6) - Fram(:,1).*y�dot).*jp;
theta�ddot = I1\(tau - V - I2 - F(:,1).*x(1:joints));

% to ensure that sqrt doesn't return an imaginary number
pms = ps-sign(x(7:8)).*x(5:6);
if (pms(1) <= 0)

pms(1) = 0.0;
end
if (pms(2) <= 0)

pms(2) = 0.0;
end
pm�dot = KH(:,1).*x(7:8).*sqrt(pms) - KH(:,2).*y�dot - KH(:,5).*x(5:6);
x�dot = (ki.*u(1:2) - x(7:8))./taui;
sys = [ theta�ddot ; x(1:2) ; pm�dot ; x�dot ];

elseif flag == 3
% return system outputs
fxee = (-K(10)*cos(x(3))-K(8)*cos(x(3)+x(4))+K(9)*sin(x(3)+x(4))-ground)*KE;
if (fxee<0)

sys = [ x(1:4) ; fxee ];
else

sys = [ x(1:4) ; 0.0 ];
end

elseif flag == 0
% return sizes and initial conditions
sys = [ 4*joints; 0; 2*joints+1; joints; 0; 0; 1 ];
x0 = [ theta�dot�ini ; theta�ini ; pm�ini; x�ini ];
ts = [ 0.0; 0.0 ];

else
% return nothing else - continuous system
sys = [];

end

CONTS.M

function [sys, x0, str, ts] = conts(t,x,u,flag)
% this s-function performs PI hybrid position/force control
%
% u = [yd(k); y(k); fxd(k); fx(k); theta1(k); theta2(k)]
global samp_per v_ini KP KI KPP KPI K joints nt;
if flag == 2

% PI control
ijacden = K(10)*(K(8)*sin(u(6))+K(9)*cos(u(6)));
jac12 = K(8)*sin(u(5)+u(6))+K(9)*cos(u(5)+u(6));
jac11 = K(10)*sin(u(5))+jac12;
ijac12 = -jac12/ijacden;
ijac22 = jac11/ijacden;

erry1 = ijac12*(u(1)-u(2));
erry2 = ijac22*(u(2)-u(1));
errfx1 = jac11*(u(3)-u(4));
errfx2 = jac12*(u(4)-u(3));

deltauy1 = KPI(1)*erry1 + KPP(1)*(erry1-x(1));
deltaufx1 = KI(1)*errfx1 + KP(1)*(errfx1-x(3));
controlslew = [ x(5)+deltauy1+deltaufx1 ];
deltauy2 = KPI(2)*erry2 + KPP(2)*(erry2-x(2));
deltaufx2 = KI(2)*errfx2 + KP(2)*(errfx2-x(4));
controlelbow = [ x(6)+deltauy2+deltaufx2 ];

sys = [ erry1; erry2; errfx1; errfx2; controlslew; controlelbow ];

elseif flag == 3
   % return the next output is.

% PI control
ijacden = K(10)*(K(8)*sin(u(6))+K(9)*cos(u(6)));
jac12 = K(8)*sin(u(5)+u(6))+K(9)*cos(u(5)+u(6));
jac11 = K(10)*sin(u(5))+jac12;
ijac12 = -jac12/ijacden;
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ijac22 = jac11/ijacden;

erry1 = ijac12*(u(1)-u(2));
erry2 = ijac22*(u(2)-u(1));
errfx1 = jac11*(u(3)-u(4));
errfx2 = jac12*(u(4)-u(3));

deltauy1 = KPI(1)*erry1 + KPP(1)*(erry1-x(1));
deltaufx1 = KI(1)*errfx1 + KP(1)*(errfx1-x(3));
controlslew = [ x(5)+deltauy1+deltaufx1 ];
deltauy2 = KPI(2)*erry2 + KPP(2)*(erry2-x(2));
deltaufx2 = KI(2)*errfx2 + KP(2)*(errfx2-x(4));
controlelbow = [ x(6)+deltauy2+deltaufx2 ];

sys = [ zeros(nt,1); zeros(nt,1); 0; 0; controlslew; controlelbow ];

elseif flag == 0
% returns the sizes vector and initial conditions.
sys = [ 0; 6; (nt+2)*joints; 6; 0; 1; 1 ];
x0 = [ 0; 0; 0; 0; v_ini ];
ts = [ samp_per 0.00 ];

else
% Flags not considered here are treated as unimportant.
sys = [];

end

RLSCONT2.M

function [sys, x0, str, ts] = rlscont2(t,x,u,flag)
% this s-function performs the rls identification and self-tuning control
% the global variables L, PSI, P, THETA
% u = [yd(k); y(k); fxd(k); fx(k); theta1(k); theta2(k)]
% lambda = forgetting factor
% na = no. of A co-efficients
% nb = no. of B co-efficients
% nd = no. of disturbance co-efficients
% nt = na+nb+nd
global PSI P U D
global THETA T1 T2 T3 T4 T5 FIXG0 FIXG1;
global na nb nd nt samp_per lambda v_ini ypos_ini fxee_ini K joints;
if flag == 2

% perform check on sample hit due to bug in Simulink - see release notes
if abs(round(t/samp_per)-(t/samp_per)) < 1e5*eps

if (t>0.3)
% multivariable self-tuning control
a1 = -THETA(1:2,:)';
a2 = -THETA(3:4,:)';
a3 = -THETA(5:6,:)';
b1 = THETA(7:8,:)';
b2 = THETA(9:10,:)';
x1 = b1/b2;
x2 = x1*x1;
x3 = x2*x1;
x4 = x3*x1;
xf = eye(2)+x1*(eye(2)-a1)-x2*(a1-a2)+x3*(a2-a3)-x4*a3;
xx = T1+eye(2)-a1-x1*(T2-a2+a1)+x2*(T3-a3+a2)-x3*(T4+a3)+ x4*T5;
F1 = xf\xx;
G0 = b1\(T1-F1+eye(2)-a1);
G1 = b1\(T2-a2-a1*F1+a1+F1-b2*G0);
G2 = b1\(T3-a3-a2*F1+a2+a1*F1-b2*G1);
G3 = b1\(T4-a3*F1+a3+a2*F1-b2*G2);
% transorm like in the Prager paper.
GG0 = G0;
xx = G3*F1-G2*F1*F1+G1*F1*F1*F1-G0*F1*F1*F1*F1;
xf = G3-G2*F1+G1*F1*F1-G0*F1*F1*F1;
FF1 = xx/xf;
GG1 = G1+FF1*G0-GG0*F1;
GG2 = G2+FF1*G1-GG1*F1;
GG3 = G3+FF1*G2-GG2*F1;
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deltau = (GG0+GG1+GG2+GG3)*u(1:2:3)-(GG0*u(2:2:4)
+GG1*x(1:2)+GG2*x(3:4)+GG3*x(5:6))-FF1*x(7:8);

control = [ x(9:10)+deltau ];
else

% fixed gain na=1,nb=1 (PI) controller
deltau = (FIXG0+FIXG1)*u(1:2:3)-(FIXG0*u(2:2:4)+ FIXG1*x(1:2));
control = [ x(9:10)+deltau ];

end
sys = [u(2:2:4); x(1:4); deltau; control ];

else
sys = [];

end

elseif flag == 3
% return the next output is.
if (t >=0.08)

% system identification : Bierman UD Factorisation
F = U'*PSI;
G = D.*F;
budbeta = lambda+cumsum(F.*G);
oldbudbeta = [lambda; budbeta(1:nt-1)];
tmp = cumsum(diag(G)*U');
L = tmp(nt,:)'/budbeta(nt);
D = D.*oldbudbeta./(budbeta*lambda);
U = U - (diag(F./oldbudbeta)*[zeros(1,nt); tmp(1:nt-1,:)])';
% system identification : Matrix Inversion Lemma
%L = P*PSI/(lambda+PSI'*P*PSI);
%P = (eye(nt)-L*PSI')*P/lambda;
THETA(:,1) = THETA(:,1)+L*(u(2)-PSI'*THETA(:,1));
THETA(:,2) = THETA(:,2)+L*(u(4)-PSI'*THETA(:,2));
model_op = [ THETA(:,1)'*PSI ; THETA(:,2)'*PSI ];

else
model_op = [ 0; 0 ];

end

if (t>0.3)
% multivariable self-tuning control
a1 = -THETA(1:2,:)';
a2 = -THETA(3:4,:)';
a3 = -THETA(5:6,:)';
b1 = THETA(7:8,:)';
b2 = THETA(9:10,:)';
x1 = b1/b2;
x2 = x1*x1;
x3 = x2*x1;
x4 = x3*x1;
xf = eye(2)+x1*(eye(2)-a1)-x2*(a1-a2)+x3*(a2-a3)-x4*a3;
xx = T1+eye(2)-a1-x1*(T2-a2+a1)+x2*(T3-a3+a2)-x3*(T4+a3)+x4*T5;
F1 = xf\xx;
G0 = b1\(T1-F1+eye(2)-a1);
G1 = b1\(T2-a2-a1*F1+a1+F1-b2*G0);
G2 = b1\(T3-a3-a2*F1+a2+a1*F1-b2*G1);
G3 = b1\(T4-a3*F1+a3+a2*F1-b2*G2);
% transorm like in the Prager paper.
GG0 = G0;
xx = G3*F1-G2*F1*F1+G1*F1*F1*F1-G0*F1*F1*F1*F1;
xf = G3-G2*F1+G1*F1*F1-G0*F1*F1*F1;
FF1 = xx/xf;
GG1 = G1+FF1*G0-GG0*F1;
GG2 = G2+FF1*G1-GG1*F1;
GG3 = G3+FF1*G2-GG2*F1;
deltau = (GG0+GG1+GG2+GG3)*u(1:2:3)-(GG0*u(2:2:4)+GG1*x(1:2)

+GG2*x(3:4)+GG3*x(5:6))-FF1*x(7:8);
control = [ x(9:10)+deltau ];

else
% fixed gain na=1,nb=1 (PI) controller
deltau = (FIXG0+FIXG1)*u(1:2:3) - (FIXG0*u(2:2:4)+FIXG1*x(1:2));
control = [ x(9:10)+deltau ];

end
   

PSI(1:nt-nd) = [ u(2); u(4); PSI(1:(na-1)*joints); control; PSI(na*joints+1:joints*(na+nb-1)) ];
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sys = [ THETA(:,1); THETA(:,2); model_op; control ];

elseif flag == 0
% returns the sizes vector and initial conditions.
sys = [ 0; 10; (nt+2)*joints; 6; 0; 1; 1 ];
x0 = [ ypos_ini; fxee_ini; ypos_ini; fxee_ini; ypos_ini;f xee_ini; 0; 0; v_ini ];
ts = [ samp_per 0.00 ];

else
% Flags not considered here are treated as unimportant.
sys = [];

end

SIMULATE.M

clc; clear all;
% load simulation models and data
sim2data;
% start simulation
tic;
rk45(model,sim_duration,[],[tolerance,minstep,maxstep,1,0,2]);
toc;

delete(gcf);
if (exist('force') == 1) & (exist('ypos') == 1)

subplot(211),plot(ypos)
axis([0 sim_duration/samp_per min(min(ypos))-0.01 max(max(ypos))+0.01])
subplot(212),plot(force)
axis([0 sim_duration/samp_per min(min(force))-20 0])

end
save results ypos force volts theta THETAS modelop lambda
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Appendix B

Bierman U/D Factorisation
Algorithm

B.1 Introduction

A widely used numerically robust version of the RLS method is the Bierman U-D

factorisation (BUD-RLS) algorithm [4.3]. This uses the symmetric property of the

covariance matrix to allow the factorisation of P(k) as :-

where U(k) is an upper triangular matrix and D(k) is a diagonal matrix. The BUD-RLS

algorithm then computes U(k) and D(k) from U(k-1) and D(k-1) respectively. This is

equivalent to calculating P(k) at twice the precision of the standard RLS algorithm. This

method also ensures that the covariance matrix remains positive definite, which is a

requirement for parameter convergence.

B.2 BUD-RLS Algorithm

This section presents the algorithm for the BUD-RLS, and uses the same parameters

and nomenclature as introduced in Section 4.2.2 for the MIL-RLS algorithm. The proof of

the BUD-RLS algorithm is given in [4.3].

At sample instant k,

Step 1: Read system output, y(k), and form �(k) using past input and output values.
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(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

Step 2: Calculate the a priori prediction error, �(k), as for the MIL-RLS :-

Step 3: Form the vectors f and g :-

and set �  = �, the forgetting factor.0

Repeat steps 4 and 5 with  j = 1, 2, ..., n , where n  is the number of rows in the regression� �

vector, �(k).

Step 4: Calculate :-

where �  is a scalar, and f , g , D  and �  are elements of the relevant vector.j j j j j

Step 5: When  j  > 1, calculate the following with i = 1, 2, ..., j -1 :-

where U  is the appropriate element of the U matrix.i j

Step 6: Calculate the new Kalman gain vector, L(k) :-

Step 7: Update the parameter estimates, �(k) :-
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% this code performs steps 2 to 7 of BUD-RLS identification algorithm
% uses the global variables PSI, PHI, U, D
% PSI = regression vector, PHI = parameter estimates
% y = y(k) - system output
% n = no. of inputs/outputs
% lambda = forgetting factor
% na = no. of A coefficients, nb = no. of B coefficients
% nd = no. of disturbance coefficients
% npsi = no. of rows of PSI
%
F = U'*PSI;
G = D.*F;
budbeta = lambda+cumsum(F.*G);
oldbudbeta = [lambda; budbeta(1:npsi-1)];
D = D.*oldbudbeta./(budbeta*lambda);
tmp = cumsum(diag(G)*U');
U = U - (diag(F./oldbudbeta)*[zeros(1,npsi); tmp(1:npsi-1,:)])';
L = tmp(npsi,:)'/budbeta(npsi);
for i = 1:n
        PHI(:,i) = PHI(:,i)+L*(y(i)-PSI'*PHI(:,i));
end

MATLAB code for Steps 2 to 7 of the BUD-RLS algorithm

Step 8: Wait for next sample, k � k +1, and then loop back to Step 1.

Implementation of the above BUD-RLS algorithm generally requires fewer

computations than an equally efficient coded MIL-RLS algorithm [4.3]. A MIMO version

of this algorithm is realised by modifying Step 7, see Section 4.4.2 :-

Step 7: Update the parameter estimates, �(k) with i = 1, 2, ..., n :-

where � (k) is the ith column of �(k), and � (k) of the ith element of the a priorii i

prediction error vector.

A version of the BUD-RLS algorithm is given below for the MATLAB programming

language. The highly vectorised nature of the language results in compact and efficient code

that is capable of both SISO and MIMO system identification.
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Appendix C

Explicit Solutions for Self-tuning Pole
Placement Controllers

C.1 Introduction

This appendix presents the solution to the design equations for both SISO and

MIMO self-tuning pole placement incremental controllers, as described in Chapter Four.

The controller polynomials are found from the solution of Equations 4.16 and 4.35, for

SISO and MIMO cases respectively.

The controller designs presented here are specific to the model orders used

throughout this thesis. A process model of n  = 2 and n  = 1, results in an incrementala b

controller with the same structure as a PID controller, and the gains of this controller are

derived in terms of the estimated model parameters. The higher order model corresponding

to the underlying physical system, n  = 3, n  = 2 and n  = 1, yields a different set of designa b d

equations that are also derived. It should be recalled that the inclusion of the offset

parameter, d , does not alter the controller design.0

C.2 Self-tuning PID Controller Design

The conventional expression for a continuous time PID controller acting on the

error, e, is :-

with proportional gain k , integral gain k  and derivative gain k . This can be cast into thep i d
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(C.6)

following discrete time representation :-

where the sampling period, � , is sufficiently short for this approximation to hold. This mays

then be expressed in an incremental form (cf. Figure 4.2) as :-

This conforms to the controller introduced in Section 4.2.3, expressed in terms of

polynomials f(z ) and g(z ), with orders of n  = 0 and n  = 2 :--1 -1
f g

From Equation 4.18, this form of PID controller corresponds to a model order of

n  = 2 and n  = 1. These controller parameters are obtained in terms of the modela b

parameters by solving Equation 4.16, which for this particular model becomes :-

Equating like powers of z :-

Which gives :-
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This set of equations defines the SISO self-tuning PID incremental controller. The

correlation between these coefficients and the original PID controller gains is found by

comparing Equations C.3 and C.4 :-

A self-tuning PI controller can be formulated in an identical manner. Since no

derivative gain is present, e(k-2) does not appear in the controller (cf. Equation C.3).

Therefore, n  = 0 and n  = 1, which, from Equation 4.18, corresponds to a process modelf g

of n  = 1 and n  = 1.a b

C.3 Self-tuning Controller Design for n  = 3, n  = 2a b

The model that corresponds to the underlying physical system, given by Equation

4.24, has polynomial orders n  = 3, n  = 2 and n  = 1. For a unique solution of Equationa b d

4.16 to exist, the required controller polynomial orders are n  = 1, n  = 3 and n  � 5, fromf g t

Equation 4.18.

Equation 4.16 is solved by equating like powers of z, and this results in five

simultaneous linear equations in five unknowns, which can be conveniently represented by

the following matrix expression :-
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The special banded structure of the left hand matrix in Equation C.9 is typical of

Sylvester matrices. The solution to Equation C.9 can be obtained by pre-multiplying both

sides by the inverse of this 5×5 matrix, yielding expressions for f(z ) and g(z ) in terms of-1 -1

a(z ), b(z ) and t(z ). This matrix inversion can become ill-conditioned under certain-1 -1 -1

situations, and robust methods for solving the polynomial identities exist [2.57].

Here, the solution to the set of five simultaneous equations is derived explicitly,

since it is simpler than determining the matrix inversion due to the sparse nature of the

matrix. The resulting equations that define the controller are :-

where :-
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C.4 MIMO Self-tuning PID Controller Design

The structure of a MIMO self-tuning pole placement controller is identical to that

of a SISO controller, except that the coefficients of the controller polynomials are now n×n

matrices, rather than scalars. However, due to the non-commutivity of matrices, the order

in which calculations are performed in the derivation is now important.

The equation that defines the controller, Equation 4.35, is identical to that for a

SISO controller. Further, the structure of the SISO PID incremental controller given by

Equation C.3 is also applicable to a MIMO system; the controller outputs and errors simply

become n×1 vectors and the gains become n×n matrices. Therefore, it follows that the order

of the model and controller polynomials match those of the SISO PID, n  = 0, n  = 2, n  = 2,f g a

n  = 1. Equation 4.35 becomes (cf. Equation C.5) :-b

The solution to this gives expressions for the controller polynomials in terms of the

model parameters. Equating like powers of z gives :-

which is the MIMO equivalent of Equation C.6, this is then rearranged to give :-

This set of equations define the MIMO self-tuning PID incremental controller, and

are identical to the SISO case, Equation C.7, except that the order of matrix calculations



 Equation C.15 conforms to the generalised solution of the MIMO self-tuning pole placement controller design†

equations presented by Prager [4.4]. To correspond to the controller proposed by Prager, the incremental controller
presented here must have the (I-Iz ) term embodied in the F(z ) controller polynomial.-1 -1
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must be preserved. The off-diagonal elements of these n×n matrices control the interactions

between different process inputs and outputs. The correlation between these coefficients

and the PID controller gains can be similarly obtained (cf. Equation C.8).

A MIMO self-tuning PI controller can also be formulated using the same procedure,

with n  = 0, n  = 1, n  = 1 and n  = 1.f g a b

C.5 MIMO Self-tuning Controller Design for n  = 3, n  = 2a b

The controller design for the MIMO model that corresponds to the underlying

physical system, n  = 3, n  = 2 and n  = 1, follows the same procedure as the SISO case. Fora b d

a unique solution of Equation 4.35 to exist, the required controller polynomial orders are

n  = 1, n  = 3 and n  � 5, from Equation 4.18.f g t

Equating like powers of z in Equation 4.35, results in five simultaneous linear

equations in five unknowns represented by the following matrix expression  :-†

This matches the equivalent SISO expression (cf. Equation C.9), with the elements

now being n×n matrices rather than scalars. Again, expressions for F(z ) and G(z ) in terms-1 -1

of A(z ), B(z ) and T(z ) can be found be inverting the matrix on the left of Equation C.15.-1 -1 -1

However, the explicit solution to the simultaneous equations is used as it is much less

computationally intensive than performing the inversion of a 5n×5n matrix. The resulting

equations that define the controller match those of the SISO controller (cf. Equations C.10
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and C.11) :-

where :-

This solution is applicable to systems with an arbitrary number of inputs and

outputs, however, the number of controller calculations required will grow exponentially

as n increases.

C.6 Pseudo-Commutivity Transformation

A MIMO self-tuning controller is designed in terms of F(z ) and G(z ) using the-1 -1

procedures described above. However, the resulting controller is not directly implementable

due to matrix non-commutivity, as discussed in Section 4.4.3. The following pseudo-

commutivity relation is used to transform the controller polynomials to yield a realisable

MIMO self-tuning controller [4.4], given by Equation 4.38 :-

The MIMO incremental PID controller derived in Section C.4, does not have a F(z )-1

term, and so this transformation is superfluous. The MIMO controller presented in Section
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C.5 has polynomial orders of n  = 1 and n  = 3, and the specific transformation for this casef g

will now be derived. Equation C.18 becomes :-

This is solved by equating like powers of z, which gives the following set of

simultaneous equations :-

The solution to these simultaneous equations gives the required pseudo-

commutivity transformation for this particular controller, which is :-

where :-

This result is applicable to controllers with or without the incremental term, (I-Iz ),-1

as it is cancelled when introduced into the above derivation.
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Abstract: This paper is concerned with reporting current work on the low-level joint angle

control of hydraulically powered underwater manipulators. The self-tuning controller has

been chosen in preference to other adaptive schemes because of its conceptual simplicity

and the wide variety of design methods offering a trade-off between complexity and

performance ability. The selection of model type and order in the estimation block and the

corresponding accuracy has been investigated for an independent joint autoregressive

model. The controller design methods investigated have been of the deterministic variety
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and have comprised of the PI, PID and incremental pole-placement controllers. These

adaptive controllers are compared to a fixed gain PID controller on the forearm rotate joint

and the transient response improvement is shown in a variety of experimental scenarios.

A.C.Clegg, "The Mechanics and Modelling of Hydraulically Actuated Manipulators",

Research Memo RM/94/8, Dept. of Computing & Electrical Eng., Heriot-Watt University,

40 pages, November 1994.

Abstract: This research memo describes how a typical hydraulic actuator is used to drive

the joints of a robotic manipulator. The hydraulic system can be separated into two parts,

the electrohydraulic servovalve (discussed in Section 2) which regulates the flow of

hydraulic fluid, and the actuation mechanism (covered in Section 3) which generates

movement at the joint. The mechanics of operation are detailed, together with common

assumptions that are made to simplify the analysis of such systems. Much of the currently

published research uses a simple linearised model of the servovalve and actuator, both this

and the full nonlinear model are detailed here, enabling more realistic simulations to be

produced. A full nonlinear model of a typical hydraulically actuated robot joint is

developed, based on the shoulder up/down joint of a Slingsby TA9 underwater manipulator.

This particular joint consists of a linear hydraulic ram which operates about the pivot of a

revolute joint. Other forms of actuation, such as rotary actuators driving revolute joints, are

simpler than the type reported on, and thus require only a subset of the model derived here.

The model is presented in Section 4, in a form for use in the MATLAB/SIMULINK

modelling and simulation package. It can easily be extended to multiple jointed robots, and

to the situation where the robot is in contact with the environment.

A.C.Clegg, "Real Time Trajectory Interpolation for Robotic Manipulators", Research
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Memo RM/92/2, Dept. of Computing & Electrical Eng., Heriot-Watt University, 18 pages,

February 1992.

Abstract: This research memo details a technique used to interpolate, in real time, between

joint angle values at variable time intervals, maintaining continuous first and second order

time derivatives of the joint angles throughout. This technique has been applied

successfully to the interface between the motion planner and the joint angle controller for

a TA9 hydraulic manipulator. The motion of the robot arm is now smooth, and passes

through all points stipulated by the motion planner maintaining the required temporal

intervals.

D.M.Lane, M.W.Dunnigan, P.J.Knightbridge, A.W.Quinn and A.C.Clegg, "Dual

Manipulator Collaboration: Issues in Architecture, Planning and Control", 7th Int. Symp.

on Unmanned, Untethered Submersible Technology, University of New Hampshire, USA,

September 1991.

Abstract: This paper presents some early ideas and results from work on the automated use

of coordinated manipulators in the underwater environment.  The specific goals is to

construct and operate a two manipulator system exhibiting collaborative behaviour using

closed loop computer control with higher level activities implementing planning and a task

level operator interface.  The system would be deployed from a ROV or A-ROV to carry

out general inspection and intervention work in typical oil exploration and production tasks.

We have employed a functional decomposition to obtain both the system architecture and

the structure of the project.  Functional modules are investigating self-tuning adaptive

control, a multi-agent approach to kinematic guidance and a reactive planner mixing task

planning and execution for error recovery.  Collaborative behaviour is to be achieved
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through co-operation of functional modules dictating task and motion activities.

Implementation is proceeding using a network of SUN workstations, PCs and DSP chips

and a pair of Slingsby TA-9 7 function hydraulic arms.  A companion paper by Chantler

details work on sensing for the system.


